
Fachbereich Informations- und Elektrotechnik

Projektleiter
Prof. Dr. Wolfgang
Matthes

Zeitraum
2009–2011

Kontakt
Prof. Dr. Wolfgang
Matthes
Fachbereich
Informations- und
Elektrotechnik
Fachhochschule
Dortmund
Sonnenstraße 96
44139 Dortmund
Tel.: 0231 9112-162
E-Mail: wolfgang.matthes
@fh-dortmund.de

The ReAl Computer Architecture
ReAl = Resource Algebra

Abstract
ReAl computer architecture replaces the conventi-
onal processor core – essentially an autonomous
state machine controlled by stored instructions
– by ensembles of processing resources. The ReAl
API allows for completely describing and exploi-
ting the inherent parallelism of the application
problems. To prove the principal feasibility, it has
been shown that the basic operators together with
some simple resources can emulate all the essen-
tial principles of the v.Neumann architecture. The
approach has been vindicated further by investi-
gating fundamental problems of efficiency. First
experimental results have been obtained.

Computer Architecture as an Algebra of Resources
In a ReAl machine, the silicon real estate will be
populated with a comparatively large number
of control and operation units, designated as
resources ([2]...[6]). The processor cores are
decomposed into their functional units, which are
put immediately under program control (Fig. 1). A
resource represents an intermediate granularity
between a fully-fledged processor and the logic

cells of a FPGA. An arithmetic-logic unit (ALU) with
some addressing, control, and storage means
may serve as a typical example. Detailed inves-
tigations seem to confirm the advantages of a
large number of comparatively simple resources
instead of a smaller number of more complex
ones. Resources are connected via bus systems
or switched point-to-point interfaces (Fig. 1). Only
some few topologies are of decisive importance
([1]), above all independent processing units
(for exploiting true parallelism) and the inverted
binary tree (for mapping nested expressions
onto it). All other topologies could be emulated
(virtualized). Therefore, cost could be expected

to be kept reasonably low. At a first glance, block
diagrams of ReAl machines resemble massively
parallel or cellular systems. The peculiar feature
is the application programming interface (API),
which enables such configurations to execute
conventional programs. To extract and describe
the inherent parallelism in statu nascendi – in
other words, immediately from the programmer’s
intentions –, the ReAl API assumes the pool of
resources to be infinite.

In order to implement a certain programming in-
tention, appropriate resources will be selected out
of the resource pool. These resources will be fed
with parameters. Then the processing operations
will be initiated. Results will be stored in memory
or written to I/O devices; intermediate results will
be forwarded to other resources. Further steps
of parameter passing, initiation and assignment
will be executed until the processing task has
been completed. Resources which are no longer
needed will be returned to the resource pool.
These processing steps are controlled by stored
instructions. The instructions – operators in the
ReAl terminology – describe only the basic proces-
sing steps, but not the operations to be performed
(e.g., addition or multiplication). So-called plat-
form resources are provided to fetch the instruc-
tions from memory. Additional operators establish
concatenations between resources and to discon-
nect such concatenations. Once a concatenation
has been set up, the steps of parameter passing,
initiation of operations and assignment of results
will be performed automatically.

Fig. 1. Storage hierarchies compared. Because the
intermediate variables reside within the processing
resources, most of the transport operations are omitted.

Fig. 2. Typical ReAl machines. 1 - resource cell;
2 - switching hub; 3 - point-to-point-interface.

103

104 Fachbereich Informations- und Elektrotechnik

Efficiency of Implementation
Each processor is basically a sequential state ma-
chine. It should do useful work. The task proper
of a machine is not executing instructions but
delivering output bit patterns according to input
bit patterns. When an application problem is to
be solved, intermediate variables, procedure calls
and the like are essentially a waste of clock cycles
or machine bandwidth. To quantitatively characte-

rize architectures and machines, a performance
metrics and a metrics of implementation efficien-
cy have been introduced ([5], [7]).

It has been found that this metrics can be used to
evaluate efficiency problems of power consump-
tion, too. Today, the primary design constraint
is not transistor count, but power consumption.
According to a strict power saving philosophy,
the universal computer is to be considered only
a makeshift solution. With respect to an applica-
tion problem, the true optimum solution would
be a dedicated machine whose cycles are spent
exclusively to compute the desired final results.
In such a machine, neither clock cycles and
memory bandwidth nor power would be wasted
for fetching instructions, loading and storing inter-
mediate values, calling functions and the like.
ReAl machines should be true universal machines
whose characteristics come as close to this ideal
as possible.

Experimental Results
It is difficult to evaluate new architectural
proposals against existing processors, because
that means to compare a fictitious machine to a
fully-fledged high-performance processor. Thus,
it is impossible simply to measure the execution
times. Instead, the program execution is to be
examined step by step.

An emulator program has been developed, which
serves as a demonstration of feasibility as well
as an evaluation tool ([6]). Thus, it was possible
to compare the new architectural principles with
conventional machines and programs and to
obtain an approximate quantitative assessment
of effectiveness. A ReAl machine is compared to a
program written in C, translated by a state-of-the-
art compiler and executed on the processor of a
personal computer.

Initial investigations have been based on
Bresenham’s line drawing algorithm. Two pro-
grams were written: the one conventionally with
the C language, the other with the ReAl API of the
EmuRix emulator. The C program has been com-
piled using the Microsoft® Optimizing Compiler
Version 16.0. The assembler code has been eva-
luated manually and compared to the statistics of
the EmuRix code, generated by the emulator. The
results are encouraging, showing an increase in
performance between 20 and 50 % even for emu-
lation on conventional machines (Fig. 3). It should
be noted that emulation is not only a means for
evaluation and comparison, but a viable techno-
logy for implementing the concept of bytecode,
which can be executed everywhere (cf. the virtual
machines JVM and Dalvik).

References:
[1]	� Matthes, W.: How many operation units are

adequate? ACM SIGARCH Computer Architec-
ture News, Vol. 19, Issue 4 (June 1991), pages
94-108.

[2]	� ReAl Design Documentation. Patent ap-
plications: DE 10 2005 021 749.4 and US
11/430,824. Internet: http://www.realcom-
puterarchitecture.de

[3]	� Matthes, W.: The ReAl Computer Architecture.
Proceedings IDAACS 2007, pages 249-254.

[4]	� Matthes, W.: Ressourcen statt Prozessor-
kerne? NTZ 7/8 2009, pages 12 – 16.

[5] 	� Matthes, W.: Resources instead of Cores? ACM
Sigarch Computer Architecture News, Volume
38, Number 2, May 2010, pages 49 – 63.

[6] 	� Kuczkowicz, L.: Verfahren zur Emulation von
Hochleistungsrechnern. Bachelor Thesis,
Fachhochschule Dortmund, 2011.

[7] 	� Matthes, W.: Hardware und Software. Embed-
ded Electronics, Band 3. Elektor, 2011.

Fig. 3. A summary result of experimental investiga-
tions ([6]). After 50 loop cycles, the performance of
the ReAl machine surpasses an x86 family processor
by approximately 50%.

