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Abstract

We present an approximation model for the chord length of radial tur-
bocompressors. The model enables the calculation of a compressor’s chord
Reynold’s number during the machine design process. The chord Reynold’s
number is shown to be the most accurate representation of the fluid dynamic
properties inside the radial turbocompressor’s impeller. It — however — re-
quires the computation of the chord length, which is only available after defin-
ing the final impeller geometry. The method presenting in this paper only em-
ploys the compressors principal dimensions to approximate the chord length.
The chord is modelled using a Bézier spline and quarter ellipse. This enables
the earlier use of the chord Reynold’s number during the machine design pro-
cess of radial turbocompressors.

Keywords: Radial turbocompressors, Reynold’s number, Turboma-
chinery, Design methods

1 Introduction

The Reynold’s number is an important property of centrifugal compressors. It is used to
compare flow conditions for different machines, estimate properties like the efficiency and
scale compressors (e.g, [1–3]).
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Nomenclature

Superscripts and Subscripts
c Chord
Hub Hub’s spanwise location
m Mean spanwise location
Shroud Shroud’s spanwise location
Symbols
β Relative blade angle in ◦

µ Dynamic viscosity in Pa s
ν Kinematic viscosity in m2 s−1

ν Length ratio
ρ Density in kg m−3

θ Circumferential blade angle in ◦

b Impeller width in m
c Chord length in m
c Velocity in m s−1

D Diameter in m
L Characteristic length in m
n Rotational velocity in 1/s
r Radius in m
Re Reynold’s number
u Circumferential velocity in m s−1

w Relative velocity in m s−1

z Cartesian z-coordiante

The Reynold’s number is a non-dimensional number. It is used to describe and compare
flows for many applications. In general, it measures the ratio of the fluid’s inertial forces
and viscous forces. The Reynold’s number is defined as [4]:

Re = cL

ν
= ρcL

µ
(1)

The characteristic length L has to be defined for each application. The Reynold’s number
for pipes is normally computed using an equivalent hydraulic diameter. To compare the
flow over a plate, the length is usually used.

For many fluids flow conditions, a constant mean velocity c is observed. Turboma-
chinery — however — feature changing velocity values, as they transfer energy from or
to the fluid. Multiple definitions of the Reynold’s number have been proposed for radial
turbocompressors. They are based on different analogies (Flow through a pipe; flow over
a plate) and are thus employing different characteristic lengths and velocity values.

These different Reynold’s number definitions are discussed in Section 2. The advan-
tages of the chord Reynold’s number are presented, and its definition is given. The actual
chord length of a radial turbocompressor’s impeller is not available during the machine
design process. An approximation based only on machine design parameters is introduced
in Section 3. This approximation is used to compute the chord Reynold’s number in
Section 4. Finally, a conclusion is given in Section 5

2 Reynold’s number definitions for radial turbocompressors

Literature for radial turbocompressors often employ the circumference Reynold’s number
based on the impeller’s outer diameter D2 and the impeller tip speed u2 [5–7]:

Reu = u2 · D2
ν

(2)
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A different approach describes the flow in the impeller as equivalent to a flow though a
pipe [1]. Here, the impeller’s exit width b2 is used as equivalent hydraulic diameter:

Reu = u2 · b2
ν

(3)

This approach has — however — limited usages. In [1], it is used for compressors, which
have narrow impeller outlets (b2/D2 < 0.03). For those impellers, the boundary layers at
hub and shroud can merge.

For general uses, both definitions feature weaknesses. They both use general properties
of the impeller [8]. The impeller diameter D2 being one. The circumferential velocity may
be expressed by the impeller diameter D2 and the impeller speed n:

u2 = D2πn (4)

The impeller exit width is usually defined by the ratio with the impeller diameter:

νb2 = b2
D2

(5)

This ratio will be determined during the compressor’s design process and, thus, be deter-
mined by the overall machine design.

The chord Reynold’s number is a more realistic representation of the radial turbo-
compressor’s internal flow field. It is computed using the relative velocity of the impeller
inflow w1 and the actual length of the flow path along the impeller blade, the chord length
c [8]:

Rec = w1 · c

ν
(6)

3 Chord Length Approximation

To compute the chord Reynold’s number Rec (Equation 6), the chord length c has to be
computed. The chord length is determined by the impeller’s shape, which is defined when
the compressor is created using Computer-aided design (CAD). At this stage, the com-
pressor’s machine design properties are usually fully defined. Thus, the chord Reynold’s
number may not be used during the machine design process. This prevents the use of
Reynold’s number-based design methods and correlations.

To enable an earlier application of the chord Reynold’s number, the chord is modeled
using the impeller’s principal dimensions. The chord’s coordinates are computed using
two paths:

1. The chord’s projection onto the r − θ plane (in z-direction) and

2. the chord’s projection onto the r − z plane (in θ-direction).

The projection in the direction of the axis of rotation (r − θ-plane) is represented by a
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Bézier spline. The chord’s projection onto the r − z plane equals the meridional path of
the selected spanwise location. A quarter ellipse represents it.

In this study, the mean spanwise location is used for the definition of the chord
Reynold’s number. Thus, the mean inlet diameter D1m is computed. This diameter
divides the inlet region in two equal areas:

D1m =
[1

2
(
D2

1Shroud
+ D2

1Hub

)] 1
2

(7)

The chord’s coordinates at the impeller inflow (C1) and outflow (C2) are thus known.
Using the r, θ, z-coordinates:

C1 =


D1m/2

θ1 = 0◦

0 m

 , C2 =


D2/2

θ2

D2 (νL − νb2)

 (8)

In Cartesian coordinates (x, y, z), the points are expressed as follows:

C1 =


0 m

D1m/2

0 m

 , C2 =


D2/2 sin θ2
D2/2 cos θ2

D2 (νL − νb2)

 (9)

The chord’s projection onto the r, θ plane is now approximated using a Bézier spline. As
the r−θ-plane is co-planar to the r−z plane, the spline is defined in Cartesian coordinates.
The spline connects the points c1 and c2. It is defined by four control points (CP1. . . CP4).
The coordinates of the first and fourth control point of the spline are defined in accordance
to Equation 9: [

xCP1

yCP1

]
=

[
0 m

D1m/2

]
(10)

[
xCP4

yCP4

]
=

[
D2/2 sin θ2
D2/2 cos θ2

]
(11)

To ensure a stable spline definition, the respective Euclidean distance from CP1 to CP2

and from CP3 to CP4 is set to (D2−D1m )/4. At the leading edge, the relative blade angle
β1 is not acting in the x, y plane. Thus, the second control point’s location can be chosen
freely. It is placed at the same Cartesian y-coordinate as CP1. Its x-coordinate is chosen
to be equal to (D2−D1m )/4. [

xCP2

yCP2

]
=

[
(D2 − D1m) 1

4
D1m

]
(12)

To obtain the location of the third control point, an auxiliary point AP3 is placed on the
line connecting the origin and CP4 at the predefined distance to CP4. The distance is again
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equal to (D2−D1m )/4. The coordinates of the auxiliary point AP3 are thus:

[
xAP3

yAP3

]
= 1

2

(
D2 − D2 − D1m

2

) [
sin θ2

cos θ2

]
(13)

To obtain the trailing edge’s relative blade angle β2, which does act in the x, y-plane,
the auxiliary point is rotated around the fourth control point. The rotation matrix R (β2)
specifies the rotation of AP3 around CP4.

R (β2) =
[
cos β2 + π

2 − sin β2 + π
2

sin β2 + π
2 cos β2 + π

2

]
(14)

Control point 3 is now calculated as:[
xCP3

yCP3

]
=

[
xCP4

yCP4

]
+ R (β2)

[
xAP4 − xAP3

yAP4 − yAP3

]
(15)

The spline’s control points are thus defined. The coordinates of the spline are computed
using a resolution of n = 100 points. Figure 1 shows the final Bézier spline and its control
points.

Figure 1: Bézier spline, defined to approximate the x, y components of the chord.

Having defined the chord’s projection onto the x, y-plane, the third dimension is defined
using the chord’s projection onto the r, z plane. This is done by defining a quarter ellipse.
The r, z coordinates of the ellipse’s origin E0, the start point E1 and the end point E2 are
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defined using Equation 8 and Equation 9:

E0 =
[

D2

0 m

]
, E1 =

[
D1m

0 m

]
, E2 =

 D2(
νL − νb2

2

)
D2

 (16)

Thus, the ellipse’s radii are:

[
r1

r2

]
= E2 − E1 =

 D2 − D1m(
νL − νb2

2

)
D2 − 0 m

 (17)

The ellipse’s coordinates are using the ellipse’s equation [9] and an angle ϕ:

[
rE

zE

]
= E0 +

[
r1sin(ϕ)
r2cos(ϕ)

]
with ϕ = [3π/2, π] (18)

The ellipse is calculated for 1, 000 points.
To compute the chord’s coordinates, the spline and the quarter ellipse must be made

compatible. As the spline is defined in x, y-coordinates and the ellipse in r, z-coordinates,
the data has to be adjusted. For each spline point, the radius r is computed.

rSpline =
√

x2 + y2 (19)

The data point of the ellipse with rSpline = rE is identified for each of the spline’s
data points. The corresponding z-coordinate of this point is added to the spline’s x, y-
coordinate. The chord is now described completely using x, y, z-coordinates. Together
with the spline and the ellipse, the combined chord path is shown in the three-dimensional
plot in Figure 2.

Finally, the chord length is obtained by computing the sum of all neighboring entries’
Euclidean distances.

c =
n−1∑
i=1

√
(xi+1 − xi)2 + (yi+1 − yi)2 + (zi+1 − zi)2 (20)

4 Chord Reynold’s number

As the chord length c is now available, the fluid mechanic properties w1 and ν have to be
obtained. As the chord Reynold’s number is computed for the mean inlet diameter D1m ,
the velocity at this diameter has to be used for the calculation of the Reynold’s number:

u1m = πnD1m ; (21a)

c1m = c1Hub
+ (c1Shroud

− c1Hub
) (D1m − D1Hub

)
D1Shroud

− D1Hub

(21b)

w1m =
(
c2

1m
+ u2

1m

) 1
2 (21c)
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Figure 2: Bézier spline, quarter ellipse and combined chord.

In this research, all compressors are designed to use air. The value of the kinematic
viscosity ν is taken from the tables provided in [10]. The kinematic viscosity is given as
a function of pressure p and temperature t. It is interpolated to match the values, which
are computed by the machine design: p1, T1.

The chord Reynold’s number is thus completely defined. Many parameters influence
its value. The relative velocity w1m is mainly affected by the machine’s duty and size.
However, the local definition of the impeller inlet area also influenced its value. The
chord length is the other main influence on the Reynold’s number’s value. It is mostly
driven by the impeller’s outer diameter D2, which is a global machine properties. Still,
more parameters are included in its definition: the axial impeller extent ratio νL, the
impeller inlet diameters D1Hub

and D1Shroud
, the impeller exit width ratio νb2 as well as

the circumferential and relative blade angle at the trailing edge θ2 and β2.

5 Conclusion

A method of computing the chord Reynold’s number Rec for radial turbocompressors
without employing the actual impeller’s CAD geometry was presented. A Bézier spline
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and a quarter ellipse model the chord’s coordinates. Both were combined to obtain the
chord in Cartesian coordinates. They are defined using only the compressors principal
dimensions, while neglecting the actual distribution of the blade angle and the actual
shape of the meridional contour.

The model enables the computation and use of the chord Reynold’s number in machine
design process. Therefore, it may be computed after the machine design has been calcu-
lated to evaluate and compare the machine design. Additionally, it may be implemented
in the machine design process when using an iterative process. This way, empirical models
may be used to streamline the design process.
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