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Flourishing technological developments have expedited the growth, usage and ap-
plication of Time-of-Flight (ToF) cameras, which are extensively used in domains
like automotive, robotics, computer vision, man-machine interaction etc. However,
the actual performance of these cameras depend on many factors, such as proper-
ties of the target, intensity of background illumination, drivers and other circuits
used, environmental conditions etc. The work presented in this thesis deals with the
distance measurement aspect of a 3D Polarization ToF camera for automotive ap-
plications that uses a Time-to-Digital Converter (TDC) to measure the time interval
between the emission of light from a source and its reception. Based on the mea-
surement of the time interval, distance can be calculated by applying the equation of
motion. In application, achieving an exact distance measurement is quite strenuous
because the operating conditions of the design are susceptible to change due to envi-
ronmental factors. Therefore, to achieve accuracy in distance measurement, the time
interval between the emission and reception of light must be measured precisely.
For this purpose, a delay asymmetry compensation logic is developed. This thesis
elaborates the addition of debugging features, redesign of some components, digital
calibration approach and the entire testbench environment of the delay asymmetry
compensation logic. It also sheds light on the implementation of the designed logic
for its successful realisation in real hardware. Lastly, it concludes by narrating future
prospects and further scopes of development.
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Chapter 1

Introduction

There have been tremendous advancements in technology in the past two decades.
This entire world has been revolutionized by technology. Surely, it has eased and en-
hanced the quality of our everyday lives. Starting from the emergence of internet to
the prevalence of smartphones, every information is just a fingertip away from us.
There have been exhilerating expansions in the field of electronics and computers as
well. Modern day electonic devices are becoming more intelligent and miniature.
Though technology is advancing more towards digital systems due to the ease digi-
tal signals can be handled with, we live in a world where the environment represents
analog properties like light, heat, sound etc. To bridge the gap between these two do-
mains, sensors have found their ways to electonic devices. In everyday lives as well
as in industries, sensors provide efficiency, safety and comfort through automated
interaction between man and machines. Knowingly or unknowingly, each and ev-
ery one of us is interacting with many types of sensors on a daily basis. Starting
from smartphones, smartwatches and cars to home automation devices and health-
care equipments, we come in contact with numerous sensors e.g. proximity snesors,
light sensors, pressure sensors, temperature sensors, touch sensors etc.

Use of sensor technology in automotive applications is increasing day by day. In-
telligent and autonomous vehicle functionalities like lane departure warning, adap-
tive cruise control, parking assist, emergency breaking and blindspot detection use
a great varieties of sensors. Modern vehicles are equipped with a wide range of
complex electronic sensor systems which help the vehicle make numerous decisions
on its own based on the data provided by the sensors that are interfaced to the ve-
hicles’ on-board computer systems. Many of these sensors operate in rough and
harsh conditions and are subjected to extreme temperature, pressure, vibrations etc.
Therefore, robust design of these sensors is necessary for safety and effective func-
tionalities of vehicles. Among these sensors, Time-of-Flight sensors are one of the
most important ones.

1.1 Principle of ToF sensors

Time-of-Flight sensors fall under the category of optical sensors. Their principle
of working is similar to sonar technology but instead of sound waves, they work
on light waves. As known as a ToF camera, a ToF sensor measures the distance of
an object from a source by emitting a beam of light and measuring the time interval
between the light emission and its reception. With the help of light pulses, usually
generated by a laser light source, high precision measurements can be carried out.
This principle provides greater range, higher resolution, greater accuracy and faster
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readings while still maintaining small size and low power. ToF sensors enable end-
less varieties of applications and use cases like gesture conrol, obstacle detection in
case of robot navigation, object detection, vehicle monitoring, people counting etc.

In laser based ToF cameras, the entire scene is captured with light pulses. For
distance measurement of an object which is at a distance d as shown in figure 1.1, the
propagation time Td of a light pulse originating from a light source, being reflected
by the object, and then reaching the pixel of a sensor placed in the immediate vicinity
of the light source is measured.

FIGURE 1.1: Time-of-Flight Distance Measurement Principle

The distance d can be calculated by using the following formula:

d =
1
2

c0 ∗ Td (1.1)

The relationship between the distance and time resolution evaluates to around
67 ps

cm using the speed of light in vacuum. Hence, to achieve a distance resolution
in centimeter precision, Td needs to be measured with an accuracy below 100ps for
each pixel independently.

1.2 Motivation & Goal

As safety concerns are of utmost importance in automotive vehicles, the ToF sen-
sors used in the vehicles must function correctly even under harsh environmental
conditions. Operating these sensors under these critical environmental conditions
might lead to inaccuracies in measurements which could have hazardous impacts.
So, these inaccuracies must be compensated by additional logics or electronic cir-
cuits to achieve precise results. As the propagation speed of light pulse is very high,
small deviations in time measurements can lead to large deviations in distance mea-
surement.

Elmos Semiconductor SE in Dortmund is developing a 3D camera known as the
“Panoptes Testchip”[1] which is to be used in automotive applications. Using ToF
principle, this camera is intended to generate precise distance images for the detec-
tion of objects and calculation of their distance from the vehicle. For measurement of
time interval between the emission of light and its reception, a Time-to-Digital Con-
verter[2] is used. To measure this time interval, an indirect approach is followed by
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applying window functions to the photocurrent at the receiver which is explained
in section 4.1.1 of chapter 3. For realising this indirect approach, another time value
parameter needs to be measured but the changes in operating conditions might lead
to an increase or decrease in the value of the time parameter. To ensure a successful
and precise measurement of that time value parameter, a delay asymmetry compen-
sation logic circuit[3] is designed. This thesis narrates the redesign of some parts
of the delay asymmetry compensation logic and addition of some other logics and
pararmeterized modules into it which ensure precision in measurement and overall
performance efficiency. To gurantee the accuracy and precision of the new design
approach, the system is also subjected to changes in parameters which could occur
due to changes in operating conditions in real life environment and thus, verified
against a wide range of parameters.

1.3 Thesis Outline

This thesis covers a variety of topics that have been clearly defined into chapters.
It is broadly classified into 5 chapters. Chapter 2 consists of Theoretical foundations
and studies which provide an overview of the topics that need to be understood
before proceeding to the subsequent chapters. These basic concepts stand as the
premises on which the following chapters are delineated. Chapter 3 introduces the
history behind the Panoptes Testchip and covers the ideas, design approaches and
challenges faced during design phase. It also covers the addition of new modules
and features into the Testchip by dividing the chapter into different sections and
subdividing the sections into different subsections for convenience and readability
purposes. Chapter 4 covers the approaches for verifying the designed system for
accuracy and precision to ensure faultless functionalities. Creation of a self check-
ing testbench and the entire testbench environment containing all the modules in an
interconnected fashion is the major part of this chapter. It also covers the implemen-
tation of the design into real life hardware to ensure proper realisation of the system
in ICs. Chapter 5 contains some additional discussions, remarks and concludes with
possible scopes for further development in this area.
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Chapter 2

Theoretical Foundation

This chapter describes some basic fundamentals that need to be understood be-
fore moving on to design implementation. Some basic theoretical concepts covered
in this chapter are the working principle of a PID controller[4], IEEE floating point
standard[5] and the devised floating point algorithm[3] for the PID controller, ba-
sic structure, working principle[6] and some important concepts[7] associated with
TDC, basics of I2C protocol[8] and how the communication happens over an I2C
bus etc. In this work presented here, the devised floating point algorithm of the PID
controller and the structure and basic fundamentals of the TDC are taken from pre-
vious works on the basis of which the redesign of PID controller and new calibration
approach are done.

2.1 PID Controller

PID controller, an abbreviation for Proportional-Integral-Derivative controller, is a
feedback control system widely used in various engineering applications and in in-
dustries to regulate processes and maintain desired setpoints by adjusting the con-
trol inputs to systems. The PID controller continuously calculates an error signal
as the difference between the desired setpoint and the measured process variable.
Then, it uses this error signal to adjust the control input in a way that reduces the
error and brings the system closer to the setpoint. An example of a control system
with a parallel PID controller is shown in figure 2.1.

FIGURE 2.1: PID Controller

A parallel PID controller is much more preferred than a PID controller where the
proportional, integral and derivative components are connected in series. The paral-
lel structure allows a complete decoupling of the proportional, integral and deriva-
tive parts whereas in the series structure, a modification in the gain of one compo-
nent affects the action of other components. Also, by switching off the proportional,
integral and derivative parts of the controller individually at runtime, other types of
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controllers like P, PI, PD can be realised. By tuning each components individually, a
wide range of behaviour can also be achieved in case of a parallel configuration.

Some properties of the individual components of a PID controller are the follow-
ing:

• The proportional term is directly proportional to the error value. Gain of the
proportional part determines the sensitivity of the controller to the error. A
larger gain results in a stronger response but may lead to oscillations and in-
stability, while a smaller gain results in a weaker response and slower settling
time.

• The integral term considers the accumulation of past errors over time and
helps in eliminating steady-state errors in the system. Integral gain determines
the controller’s response to the accumulated error. A larger gain increases the
integral action and helps in eliminating steady-state errors, but it can also lead
to overshooting and instability if set too high.

• The derivative term anticipates future errors by considering the rate of change
of the error. It helps in damping oscillations and reducing overshoot. Deriva-
tive gain determines the controller’s response to the rate of change of the error.
A larger gain increases the derivative action and helps in damping oscillations,
but it can also make the system more sensitive to noise.

The PID controller shown in figure 2.1 uses continuous time integrator and dif-
ferentiator and operates on continuous time signals. By using the control properties
of all the three components of the PID controller, the continuous time transfer func-
tion[9] can be given by the following equation.

y(t) = P ∗ x(t) +
∫ t

0
x(t) dt + D ∗ dx(t)

dt
(2.1)

By taking the Laplace transformation of the above equation, the continuous time
transfer function can be written as:

Y(S) = P ∗ X(S) +
I
s
∗ X(S) + D ∗ s ∗ X(S) (2.2)

By substituting

C(S) =
Y(S)
X(S)

(2.3)

C(S) = P +
I
s
+ D ∗ s (2.4)

By using backward Euler approximation[10] to derive a discrete time system[11]
from the continuous time transfer function, s can be written as:

s =
z− 1
z ∗ Ts

(2.5)
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substituting this value of s in equation 2.4

C(z) = P +
I ∗ Ts ∗ z

z− 1
+ D ∗ z− 1

z ∗ Ts

= P + I ∗ Ts ∗
z

z− 1
+

D
Ts
∗ z− 1

z

=
(P + I ∗ Ts +

D
Ts
) ∗ z2 + (−P− 2 D

Ts
) ∗ z + D

Ts
z2 − z

(2.6)

For a given scenario in the discrete time domain, the sampling period Ts is as-
sumed to be constant. Substituting Kp = P, Ki = I ∗ Ts, Kd = D

Ts
in equation 2.6

Y(z)(z2 − z) = (Kp + Ki + Kd) ∗ X(z) ∗ z2

+ (−Kp − 2 ∗ Kd) ∗ X(z) ∗ z
+ Kd ∗ X(z)

(2.7)

The inverse z-Transform gains the difference equation for the PID controller which
can be given by

y[n] = y[n− 1] + x[n] ∗ (Kp + Ki + Kd)

+ x[n− 1] ∗ (−Kp − 2 ∗ Kd)

+ x[n− 2] ∗ Kd

(2.8)

In this PID controller description, the integrator state is contained within the pre-
vious output value. The state of the controller is contained with the registers y[n - 1],
x[n - 1] and x[n - 2]. The coefficients only have to be recomputed once the sampling
time or one of the gains change. Equation 2.8 can be rewritten as:

y[n] = y[0] + Kp ∗
[

n

∑
k=0

xk −
n−1

∑
k=0

xk

]

+ Ki ∗
n

∑
k=0

xk

+ Kd ∗
[

n

∑
k=0

xk − 2 ∗
n−1

∑
k=0

xk +
n−2

∑
k=0

xk

]

= y[0] + Kp ∗ x[n] + Ki ∗
n

∑
k=0

xk + Kd ∗
(
x[n]− x[n− 1]

)
(2.9)

Substitution of the following in equation 2.9 gives rise to equation 2.11.

y[0] = 0

i[n] =
n

∑
k=0

xk = i[n− 1] + x[n]

d[n] = x[n]− x[n− 1]

(2.10)

y[n] = Kp ∗ x[n] + Ki ∗ i[n] + Kd ∗ d[n] (2.11)
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In equation 2.9, proportional, integral and derivative components are split up in
separate summands and the initial condition is y[0] = 0. Since the integral part is
separated, it can be written in recursive form and has its own state register i[n]. To
calculate the next time step, only two registers are required here, i[n - 1] and x[n - 1].
Three multiplications and four additions are required here for the computation.

The gains of the proportional, integral and derivative components- Kp, Ki and Kd
could be represented as signed integers, signed fixed points, signed floating points
etc. For integers and fixed point numbers, the logic implementation of the calcula-
tions are fairly easy- only adders and multipliers are needed. Compared to integers,
fractional numbers can be represented by fixed points. However, for both integers
and fixed point numbers, the range of numbers that can be represented are limited
whereas floating point numbers can cover larger dynamic ranges of numbers. They
can also accomodate calculations with numbers that are multiple orders of magni-
tude apart at relatively small bit widths as compared to integers and fixed point
numbers. So, a large range for tuning of the gain coefficients can be provided in a
better manner if the gain coefficients are represented in floating point format.

2.2 Floating Point Representation

Floating-point arithmetic is a method used in computing to represent and per-
form calculations with real numbers. It’s designed to approximate a wide range of
real numbers with a fixed number of binary bits. In floating-point arithmetic, real
numbers are represented as a combination of a sign, a significand or mantissa, and
an exponent. The general form is as follows:

number = sign ∗ mantissa ∗ baseexponent (2.12)

The "sign" bit defines the sign of the number and whether the number is positive
or negative. The "mantissa" contains the fractional part of the number, and the "ex-
ponent" determines the magnitude of the number relative to the base. The "base"
is typically 2 for most computer systems but sometimes, a base of 10 is also used.
The most widely used standard for floating point representation is IEEE 754[5]. This
standard defines formats for single precision (32-bit) and double precision (64-bit)
floating point numbers. It also specifies rules for arithmetic operations and round-
ing behavior to ensure consistent results. In IEEE 754, floating point numbers are
normalized, meaning the most significant bit of the mantissa is always 1, except for
special cases like zero and denormalized numbers. Also, the exponent is always 2
for IEEE 754. Denormalized numbers allow for representing extremely small values
close to zero that would otherwise be too small to represent normally. The range
and precision of floating point numbers depend on the number of bits allocated to
the mantissa and exponent.

For IEEE 754, equation 2.12 can be written as

Z = (−1)s ∗ (1 + m) ∗ 2e (2.13)
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2.3 Devised Floating Point Representation for PID

As addition and multiplication in IEEE floating point format is relatively complex,
for ease and convenience, a custom floating point representation is devised for the
calculations related to the PID controller. According to this custom representation, a
number Z can be written as

Z = m ∗ 2e (2.14)

Here, m is a 2’s complement number. So, the number representation doesn’t re-
quire a separete sign bit. In multiplication, instead of resulting mantissa normaliza-
tion, the bit width of the resulting mantissa is grown to accomodate the result in the
following manner:

Z3 = Z1 ∗ Z2 = m1 ∗m2 ∗ 2e1+e2 = m3 ∗ 2e3 (2.15)

where

m3←→ = m1←→+ m2←→ (2.16)

and

e3←→ = max( e1←→, e2←→) + 1 (2.17)

Using this approach, the floating point multiplication can be represented as one
integer addition and one integer multiplication. When adding two numbers, follow-
ing approach is used:

Z3 = Z1 + Z2 = m1 ∗ 2e1 + m2 ∗ 2e2 (2.18)

e3 = min(e1, e2) (2.19)

Z1 = m1 ∗ 2e1−e3 ∗ 2e3 = m̂1 ∗ 2e3 ; m̂1←→ = m1←→+ (e1 − e3)

Z2 = m2 ∗ 2e2−e3 ∗ 2e3 = m̂2 ∗ 2e3 ; m̂2←→ = m2←→+ (e2 − e3)

Z1 + Z2 =Z3 = (m̂1 + m̂1) ∗ 2e3 = m3 ∗ 2e3 ; m3←→ = m̂1←→+ m̂2←→+ 1

(2.20)

Both numbers are brought to a common exponent e3 in this calculation. The
smaller of the two summands’ exponents is chosen as the common exponent so that
no information is lost in the process. In order to compensate for the matching of the
exponent, the mantissa of the summand with the larger exponent is left shifted and
grown accordingly.

2.4 Applying the devised representation to PID

There should be provision to supply negative exponents to the PID controller. For
a given bit width, the set of representable exponents for a 2’s complement number
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is predetermined. For example, a 4 bit exponent in 2’s complement can represent 16
exponents: -23,. . . ,23 - 1. But if 16 exponent from -1,. . . ,14 need to be represented,
the same 4 bit 2’s complement exponent will not be large enough. For this reason,
for each coefficient, the minimum exponent value emin is defined by a parameter.
Instead of supplying full exponents as inputs to the PID controller, biased exponents
Δe are used. The actual exponent is then calculated as e = emin + ∆e. Considering
the example, to represent -1,. . . ,14, emin = −1 with a 4 bit 0 ≤ ∆e ≤ 15 can be taken
into account. This gives −1 ≤ e = emin + ∆e ≤ 14. This Δe is an unsigned number
which can simplify the calculations and the associated logic design.

Because of the series of calculations involved, the number representation grow
continuously. However, the mantissa of the output of the PID controller has a fixed
bit width. So, rounding is necessary. The final result of the PID computation is y[n]
and it is rounded to ỹ[n].

ỹ[n] = mỹ ∗ 2eỹ (2.21)

and

ỹ[n] ≈ y[n] (2.22)

Parameter Symbol Meaning
WidthX x[n]

←→
Bit width of the error signal

WidthY mỹ[n]←−→
Bit width of the mantissa of the rounded PID
output value

WidthAcc i[n]
←→

Bit width of the accumulator inside the inte-
grator

WidthKp mKp←→ Bit widths of the mantissae of the
coefficientsWidthKi mKi←→

WidthKd mKd←→
WidthDExpKp ∆eKp←−→ Bit widths of the biased exponents of the

coefficientsWidthDExpKi ∆eKi←→
WidthDExpKd ∆eKd←−→
WidthDExpY ∆ey

←→
Bit width of the biased exponent of PID out-
put

ExpMinKp eKp,min
Minimum exponents of the coefficientsExpMinKi eKi,min

ExpMinKd eKd,min
ExpMaxKp eKp,max

Maximum exponents of the coefficientsExpMaxKi eKi,max
ExpMaxKd eKd,max

ExpMinY eỹ,min
Minimum exponent of the rounded PID out-
put

ExpMaxY eỹ,max
Maximum exponent of the rounded PID out-
put

TABLE 2.1: Parameters of The PID Controller
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Signal Width Symbol I/O Signed Meaning

x WidthX x[n] I Yes
Current input to PID
(error value)

y WidthY mỹ O Yes
Mantissa of the
rounded output value
of PID

kp WidthKp mKp

I Yes
Mantissae of P, I and D
coefficientski WidthKi mKi

kd WidthKd mKd

dexp_kp WidthDExpKp ΔeKp

I No
Biased exponents of P, I
and D coefficientsdexp_ki WidthDExpKi ΔeKi

dexp_kd WidthDExpKd ΔeKd

dexp_y WidthDExpY Δey I No
Biased exponent of out-
put y[n]

sat 1 O
Active high signal indi-
cating saturation of In-
tegrator

TABLE 2.2: Inputs and Outputs of The PID Controller

2.4.1 Derivation of the Floating Point Equations

The coefficient inputs to the PID controller are the following:

Kp = mKp ∗ 2
eKp = mKp ∗ 2

eKp,min+∆eKp

Ki = mKi ∗ 2eKi = mKi ∗ 2eKi,min+∆eKi

Kd = mKd ∗ 2eKd = mKd ∗ 2eKd,min+∆eKd

(2.23)

Substituting equation 2.23 in equation 2.11

y[n] = my ∗ 2ey = Kp ∗ x[n] + Ki ∗ i[n] + Kd ∗ d[n]

= x[n] ∗mKp︸ ︷︷ ︸
mp

∗2eKp + i[n] ∗mKi︸ ︷︷ ︸
mi

∗2eKi + d[n] ∗mKd︸ ︷︷ ︸
md

∗2eKd (2.24)

Where

mp
←→

= x[n]
←→

+ mKp←→
mi←→ = i[n]

←→
+ mKi←→

md←→ = d[n]
←→

+ mKd←→
= x[n]
←→

+ 1 + mKd←→

(2.25)

For addition of proportional, integral and derivative components, a common ex-
ponent is established. Since the mantissae are grown according to the exponents,
choosing the smallest possible exponent facilitates no loss in information.

ey = min(eKp,min, eKi,min, eKd,min) (2.26)
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y[n] = my ∗ 2ey =
(

mp ∗ 2
eKp
−ey︸ ︷︷ ︸

m̂p

+mi ∗ 2eKi
−ey︸ ︷︷ ︸

m̂i

+md ∗ 2eKd
−ey︸ ︷︷ ︸

m̂d

)
∗ 2ey

(2.27)

Substituting eKp , eKi and eKd with their biased exponent representation from ear-
lier:

y[n] = my ∗ 2ey

=
(

mp ∗ 2
eKp,min−ey+∆eKp︸ ︷︷ ︸

m̂p

+mi ∗ 2eKi,min−ey+∆eKi︸ ︷︷ ︸
m̂i

+md ∗ 2eKd,min−ey+∆eKd︸ ︷︷ ︸
m̂d

)
∗ 2ey

(2.28)

Where the mantissa of the output of the PID controller my can be written as

my = m̂p + m̂i + m̂d (2.29)

As explained earlier, after computing the output of the PID controller y[n], it is
rounded to ỹ[n]. From equation 2.22, the final rounded output of the PID controller
can be given by

ỹ[n] = y[n]

⇒mỹ ∗ 2eỹ = my ∗ 2ey

⇒mỹ ∗ 2eỹ = my ∗ 2ey−eỹ ∗ 2eỹ

⇒mỹ = my ∗ 2ey−eỹ

(2.30)

2.5 Time-to-Digital Converter

A Time-to-Digital Converter is a type of electronic circuit used to measure the
time interval between two events and convert it to a digital representation. It is
used in applications like ToF, radar systems, experiments involving laser ranging,
measurements in atomic and high energy physics etc. The TDC works by quantizing
the time interval between events into digital pulses or codes. There are different
types of TDC architectures like Vernier TDC, digital TDC, Time-to-Code Converter
TDC etc. Among these, digital TDCs are used vastly in integrated circuits.

The quantization of time interval in digital TDC is achieved by a reference clock.
The TDC contains a clock generator and a counter. The principle is to measure the
number of clock cycles between the time interval. The time interval is bounded by
start and stop signals. When the first event occurs, the start signal goes high and the
counter starts counting the clock cycles and when the second event is detected by
the assertion of the stop signal, the counter stops. The counter value corresponds to
the time interval between the two events and is represented in digital code. Here,
the resolution of the TDC is limited by the frequency of the refernce clock. How-
ever, quantization errors might occur in this type of measurement because of the
asynchronicity between the start and stop signal and the reference clock.
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Before moving on to the structure of the TDC, it is necessary to understand the
delay-line based TDC. By dividing the period of the reference clock into smaller time
segments, the resolution of the TDC can be increased. This can be achieved by using
a chain of identical delay elements called delay-lines which produce phase shifted
duplicates of the reference clock. Figure 2.2 shows the basic structure of a delay-
line based TDC. Here, the reference clock signal is considered as the start signal of
the timing event. It is delayed by the delay elements and supplied as inputs to the
flip-flops present after each delay element. The stop signal is used as the clock input
for the flip-flips of the delay-line elements. When the stop signal arrives, a logical
HIGH level is stored in all the flip-flops for which the start signal is already present.
All the other flip-flops where the start signal has not yet arrived store a logical LOW
value. The outputs of the flip-flop taken altogether create a thermometer code whose
HIGH-LOW transitions indicate how many delay elements the start signal passes
until the stop signal arrives.

FIGURE 2.2: Basic Delay-Line based TDC

2.5.1 Structure of the TDC

The primary goal of the delay-line of the TDC used in this design is to delay the
incoming clock signal by exactly one clock period. To achieve this over a wide range
of temperature and operatinig conditions, there is a provision to control the delay
of the delay-line. To change the delay of the delay elements, the supply voltage of
the inverters inserted before the delay-line is adjusted till the delay of the dely-line
corresponds to one clock period of the reference clock. In this application, there are
180 elements in the delay-line. Additional elements placed at the beginning and end
of the delay-line don’t contribute to the overall delay. The structure of the voltage
controlled delay-line is shown is figure 2.3.

FIGURE 2.3: Voltage Controlled Delay-Line

The individual delay elements of the delay-line consist of a number of components
in addition to the differential inverters. The structure of a single delay element is
shown in figure 2.4.
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FIGURE 2.4: Structure of a Single Delay Element

The control voltage VCTRL is used as the supply voltage for the inverter chain in
the delay-line. The output voltage of the inverters (1) are limited to the value of the
control voltage. To process the outputs of the delay-line by circuits supplied by 3.3V,
the outputs of the inverters need to be raised beyond the control voltage level. For
this purpose, level shifters (2) are used. A strong buffer stage (3) comprised of series
connected inverters are used to drive the interpolation resistors (4) and the output
buffers (5) associated with them. The interpolation reistors are used to improve the
resolution.

Each output of the interpolation register, after passing through the buffer stage,
is connected to the clock input of a flip-flop. These flip-flops are termed as delay-
line flip-flops. The STARTSTOP signal, created by the start and stop signal, is fed
as input data to the flip-flops. When the clock signal passes through the delay-line,
till the time the STARTSTOP signal is active, the output of each flip-flop through
which the clock signal passes is switched to a logic HIGH state. This generates the
thermometer code which represents the time for which the STARTSTOP signal was
active, which is nothing but the measured time interval. After one clock period,
these delay-line flip-flops are reset with each rising edge of the clock. To store the
thermometer code beyond the period of one clock cycle, another set of flip-flops
named as output flip-flops are used. The supply voltage is connected as input to
these flip flops and the outputs from the delay-line flops are connected to the clock
inputs.

Figure 2.5 shows the entire structure of the TDC consisting of different compo-
nents. The functionalities of these components are described briefly.
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FIGURE 2.5: Structure of the TDC

A clock signal with a frequency of 40 MHz is used as the input to the TDC, named
by CLKIN. To generate an inverted input signal for the differential delay-line, it is
passed through a series of inverters (2). This clock signal, after passing through
the delay-line (3) generates the delayed clock CLKDEL. For load balancing at the
input and output of the delay elements, some dummy elements (4) are placed at
the beginning and end of the delay-line. These elements don’t contribute to the
overall delay of the delay-line. The reference clock CLKREF is picked up after passing
through the dummy element as shown in the figure.

The reference clock and the delayed clock signals are compared with each other in
terms of their phase position by the help of a phase detector (5). Depending on the
leading clock edge, the phase detector generates UP or DOWN signal which is fed
to a charge pump with loop filter (6). Based on the input, the charge pump supplies
positive or negative current to the loop filter which in turn increases or decreases
the voltage VF which is input to the linear regulator. The output from the voltage
regulator is VCTRL which supplies and in turn controls the delay-line.

2.5.2 Concept of Double Sampling and Blind Spot

When the clock signal propagates through the delay-line, the flip-flops gets sam-
pled on the rising edge of the clock. Based on whether the delay-line is too slow
or too fast, the sampling of the flip-flops gets affected. This might lead to a double
sampling or a blind spot phenomenon in the TDC. Figure 2.6 and figure 2.7 showing
the examples of double sampling and blind spot effects, respectively are presented
here for better understanding.

FIGURE 2.6: Example Showing Double Sampling Effect

FIGURE 2.7: Example Showing Blind Spot Effect
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In figure 2.6 and figure 2.7, the colors grey, white and red represent the delay-
line, rising edge of the clock signal that propagates through the delay-line and the
number of flip-flops that get sampled to logic HIGH state during the presence of the
STARTSTOP pulse, respectively.

When the delay-line is too slow, the rising edge of one clock cycle might be still
present in the delay-line when the rising edge of the next clock cycle enters. This
leads to the sampling of the flip-flops twice because of the presence of two rising
edges of the clock signal. It is observed that during the presence of one rising edge
in the delay-line, the number of flip-flops triggered are marginally lower than the
ideal value but during the presence of two rising edges, the number is twice as high.
This is termed as double sampling effect. But when the delay-line is too fast, the
rising edge of one clock cycle might have left or is just about to leave the delay-line
before the rising edge of the next clock cycle enters. So, the number of flip-flops
sampled are notably less than the ideal value. This effect is termed as blind spot.

2.6 I2C Protocol

Inter Integrated Circuit (I2C) is a serial communication protocol used to transfer
data between integrated circuits or chips within a device. It has become widely
adopted since its development in the 1908s due to its simplicity and versatility. The
protocol allows multiple devices to communicate with each other over a common
bus using just two signal lines- SCL (Serial Clock Line) and SDA (Serial Data Line).
It supports various data rates such as standard mode, fast mode, high spe ed mode
etc.

I2C uses a master-slave architecture. The communication is initiated by the mas-
ter device which controls the bus and generates the serial clock signal. This signal
is also used to synchronize data transmission between the master and the slave de-
vices. The serial data line is used to send data in both directions. The SDA line is
bidirectional which means that the master and slave devices can both send data on
the line. The communication is half duplex where only a master or a slave device
can send data on the bus at a time. A master device starts and stops the commu-
nication on the bus which removes the potential problem of bus contention. Also,
the communication happens via a unique address on the bus which allows multiple
master and multiple slave devices on the bus.

2.6.1 I2C Interface

To communicate over the bus, a slave device needs to be addressed by the master.
Each device on the I2C bus has a specific device address to distinguish themselves
from other devices which are on the same bus. Many devices require configuration
after startup. This is done by the bus masters accessing the internal register maps of
the devices. The internal register maps of the slave devices have unique addresses.
Depending on the application, a device can have one or multiple registers where
data is stored, read from or written to.

The SCL and SDA lines must be connected to the power supply through pull-
up resistors. The size and value of the pull-up resistor depends on the amount of
capacitance on the I2C bus lines. Data transfer can be initiated when the bus is idle
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and the bus is considered idle if both the SCL and SDA lines are high after a STOP
condition. The general process for a master to access a slave device consists of a
number of steps. Before moving on to the data transfer between a master and a
slave device, it is necessary to know the associated concepts.

START and STOP condition

Communication with a slave device is initiated by the master sending a START
condition and terminated by the master sending a STOP condition. A HIGH to LOW
transition on the SDA line while the SCL line is HIGH defines a START condition.
Similarly, a LOW to HIGH transition on the SDA line while the SCL line is HIGH
defines a STOP condition.

Repeated START condition

A repeated START condition is similar to the START condition and is used when
there is back to back data transfer between the master and the slave. In other words,
when the master wants to start a new communication but doesn’t want to release the
bus, it generates a repeated START condition instead of a START condition. It might
look identical to the START condition but actually it is different because it happens
before a STOP condition when the bus is not idle. This repeated START condition is
really useful in case of a system where there are multiple masters. For example, If
one master is done with the communication and let the bus go idle by asserting the
STOP condition, another master might take control over the bus for communicating
with the slave device(s) and the first master has to wait till the second master finishes
the communication.

Acknowledge (ACK) and Not Acknowledge (NACK)

During data transfer, each byte of data is followed by one bit of ACK from the
receiver. The receiver can be either the master or the slave. For the receiver, the ACK
bit is a way of telling the transmitter that the data byte was successfully received and
another byte might be sent. Before the receiver can send an ACK, the transmitter
must release the SDA line. To send an ACK bit, the receiver pulls down the SDA
line. When the SDA line remains high during the ACK/NACK related clock period,
it is interpreted as a NACK. The NACK condition can be generated if the receiver
doesn’t understand the command that it gets from the master or if the receiver can’t
receive any more data bytes or if the receiver is busy and performing some other
functions, thereby not ready to start communication with the transmitter.

Writing to a Slave Device

To write to a slave device of the I2C bus, the master sends a START condition on
the bus with the slave’s device address. Usually, this device address is of 7 bits. It
is followed by a R/W bit signifying a data read or data write operation. For read
or write operation bit 1 or 0 is sent, respectively. In this case, the device address
followed by a bit 0 is sent, indicating write operation. After the slave sends the ACK
bit, the master sends the register address of the register it wants to write to. The
slaves sends the ACK bit again, letting the master know it is ready to receive the
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next data byte. Then, the master starts sending the data to be written to the register.
After this data byte, the slave sends the ACK signal again and the master terminates
the transmission with a STOP condtion. Figure 2.8 shows an example of I2C write
operation to a register of a slave device.

FIGURE 2.8: Example of I2C Write Operation to a Slave Device Reg-
ister

Reading From a Slave Device

Reading from a slave device is similar to the writing but with a few extra steps.
The master starts off by sending a START condition followed by the device address
of the slave device and a bit 0 indicating which specfic device it wants to perform
the read operation from. Upon receiving the ACK from the slave, the master lets
the slave know which register it wants to read from by sending the address of that
particular register. Once the slave acknowledges this register address, the master
sends the START condition again, followed by the slave address with the R/W bit
set to 1 indicating read operation. After getting acknowledgement from the slave,
the master releases the SDA line but continues to supply clock to the slave, so that
the slave can transmit data. Now, the master becomes the master-receiver and the
slave becomes the slave-transmitter. At the end of every data byte, the master sends
an ACK to the slave, letting the slave know it is ready for more data. Once the
master receives the number of data bytes it is expecting, it signals the slave to pause
the communication and release the bus by sending a NACK signal. Then, the master
generates the STOP condition in the end.

FIGURE 2.9: Example of I2C Read Operation from a Slave Device Reg-
ister
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Chapter 3

Design Approach

3.1 History

This work is a continuation of “Panoptes delay asymmetry compensation logic”.
The delay asymmetry compensation logic has the goal of increasing the accuracy of
distance measurement to a value smaller than one centimeter which is achieved by
integrating a TDC with temporal resolution below 100ps. As described in the delay
asymmetry compensation logic document[3], an indirect approach is followed to
measure Td by measuring time-current areas or charges. It is done by applying two
window functions to the photocurrent at the receiver and the result can be integrated
as shown in figure 3.1. Windowing the light pulse is achieved by using a shutter
while the integration of the time-current area is accomplished by the accumulation
of charges in the pixel behind the shutter which is an electronic switch. The charges
are collected by shifting the shutter pulse relative to the laser pulse.

FIGURE 3.1: Windowing of Received Light for Indirect Measurement

The relationship between Td, Tdly and the charges acculumated in the window
functions is given by the following equation:

Td − Tdly = Twnd.
Q1

Q1 + Q2
(3.1)

From this above equation, Td can be measured if the time delay Tdly is known
which is basically the delay between the laser emitting light and the shutter open-
ing. So, the primary focus of the delay asymmetry compensation logic is to calculate
the Tdly. Theoretically, if the light pulse was emitted exactly at the same time when
shutter opens, Tdly would have been 0 and would have been eliminated from the
above equation. Even if the drivers for the shutter and the light source get driven at
the same time, their outputs don’t react concurrently. In the actual circuit, the light
source consumes a lot of power and the drivers associated with it are large in com-
parison with the drivers for the shutter. So, this Tdly is the result of these drivers and
changes with different operating conditions. So, the delay asymmetry compensation
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logic contains both a measurement circuit which calculates the Tdly and a compen-
sation circuit which increases or decreases the Tdly in order to bring it to a set point
or reference value. The time difference between the shutter opening and the laser
emitting light is fed to a TDC. The TDC converts this time difference to digital out-
put signals which is then measured by the digital logic and the difference between
the measurement and the reference value, known as the error value, is calculated.
This error value is fed to a PID compensator which tries to minimize it. This PID
compensator output is fed to a variable delay which in turn increases or decreases
the Tdly.

A block diagram of the delay asymmetry compensation logic is shown in figure
3.2. Some of the control signals are omitted from the figure for clarity and compre-
hensibility.

FIGURE 3.2: Block Diagram of Delay Asymmetry Compensation
Logic

The control logic for the camera developed by Elmos Semiconductors triggers the
shutter opening and light emission. It contains digital delays for both the signals
which can be used to adjust the relative timing of these two signals down to 1ns
resolution. The light emission trigger signal is amplified off-chip and fed to the
LED. A photodiode placed in the proximity of the LED captures the light as soon
as it’s emitted. The output of the photodiode is passed through a transimpedance
amplifier and then through a comparator circuit which produces the stop signal for
the startstop generator. The start signal for the startstop generator is produced by
the variable delay.

The startstop generator runs at a clock frequency of 80 MHz. It combines the start
and stop signals into a single startstop signal, the pulse width of which must be the
difference between the rising edges of start and stop. It also generates stop_latched
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signal which is used by the main FSM of the digital part to recognize the completion
of a measurement. Since, the digital part runs at a clock frequency of 20 MHz, to
avoid metastability because of clock domain crossing, stop_latched is passed through
multiple flip-flops for clock synchronization.

The startstop signal is then fed as an input to the TDC. As described previously,
the TDC measures the time interval between the start and stop pulses and produces
a digital code representation of that time interval as output. This digital output of
900 bits is fed into the digital part for further processing.

FIGURE 3.3: Main FSM of the Control Loop

The delay compensation FSM is the main control unit which carries out all the
steps like calibration, setting of mask bits, compensation etc. by keeping a balanced
coordination among all the other modules of the digital part. The diagram of the
FSM is shown in figure 3.3. It generates all the necessary control signals for the op-
eration of other modules. When powering up the camera, a change in temperature
is detected or a certain time period has elapsed. It is assumed that Tdly might have
changed from its last known value and requires recompensation. At that point, the
camera control logic, shown by the light blue block in figure 3.2, initiates the delay
compensation procedure by asserting the signal run_comp_enable to the control loop
which is shown in light yellow block in figure 3.2. The FSM powers up the TDC and
waits for it to settle. After the counter expires indicating the end of the startup cycle
period, the system enters the calibration state. During this phase, the system is cal-
ibrated by taking a set of reference pulses into consideration. The reference pulses
are generated by the edge generator module which is described in section 3.13.1.
During the calibration process, the FSM generates the output signal ref_select which
is at a logic HIGH state and given as an input to the multiplexers START_MUX and
STOP_MUX as shown in figure 3.2. Therefore, the outputs of the multiplexers are
the reference pulses. The reference pulse ref_laser from the STOP_MUX is passed
through the TIA and the comparator and the stop signal generated by the compara-
tor is fed as one of the inputs to the startstop generator. Similarly, the reference pulse
ref_shutter is passed through the START_MUX and provided as the start signal to the
startstop generator. Along with the startstop signal, the startstop generator also gen-
erated the signal stop_latched which is given as an input to the main FSM. After the
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assertion of the stop_latched signal, the FSM waits for some time and then generates
the output signal tdc_sample_trig which is an input to the TDC sampling register.

As described earlier, the startstop signal generated by the startstop generator is
passed through the TDC which generates the digital code representation of the time
interval defined by the startstop signal. This digital code is fed to the TDC sampling
register which samples this code and synchronizes it to the 20MHz clock based on
the tdc_sample_trig signal from the FSM. Then, the digital code is passed through the
correction mask module. During the calibration process, the correction mask mod-
ule doesn’t generate any mask bits and provides the digital code output of the TDC
sampling register as input to the bubble error correction module. The bubble error
correction mechanism is described in detail in "Panoptes delay asymmetry compen-
sation logic" document[3]. Then, the digital code is checked for the bubble error
correction. The bubble errors are eliminated, if there are any. Then, the number of
1s in the digital code are calculated. As described in section 2.5 of chapter 2, the
longer the pulse width of the time interval is, the more flip-flops of the TDC change
state from 0 to 1. So, the count of number of 1s represent the measurement value.
In the meantime, the FSM generates the binary_result_trig signal which assigns the
measurement value to the measurement result register. The measurement results
are averaged over multiple measurements of the reference pulses and thereby, the
set point of the compensation loop for the current operating condition is established.
Then, the calibration process gets completed and the calib_done output signal is as-
serted by the main FSM. Also, the ref_select signal is assigned to a logic LOW state.
The state diagram showing the calibration procedure is presented in figure 3.5.

After the calibration process is complete, the system goes into the SET_MASK
state. This state generates the control signals necessary for the generation of the
mask bits in the correction mask module. The state diagram showing the generation
of these control signals is presented in figure 3.4. These mask bits are added to the
digital code to mitigate the double sampling or blind spot effect observed in the
TDC. It can be observed from figure 3.4 that if there is no such phenomenon in the
TDC, then the system exits the SET_MASK composite state after passing through
the INIT_MASK state. This transition has a higher priority than the other transition
from the INIT_MASK state. The concepts of double sampling and blind spot are
explained in section 2.5.2 of chapter 2.

After that, the system goes into the compensation process. During the compen-
sation process, the ref_select signal is deasserted by the FSM. Therefore, the sig-
nals laser_after_driver and shutter_detect are passed through the START_MUX and
STOP_MUX, respectively. After the stop_latched signal is asserted by the startstop
generator, the digital code output of the TDC is sampled in the TDC sampling regis-
ter based on the tdc_sample_trig control signal. Then, the mask bits generated in the
SET_MASK state are added to the sampled digital code. The digital code is corrected
if there are any bubble errors. After that, the measurement value is assigned to the
measurement result register which is controlled by the binary_result_trig signal as ex-
plained earlier. The difference between the reference value, assigned to the reference
result register during calibration process, and the measurement value is calculated
and this error signal is passed through the PID controller. Based on the value of this
error signal, the PID controller carries out a series of calculations as per the equa-
tions explained in section 2.4.1 of chapter 2 and generates the rounded output. This
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digital output is passed through a DAC and the analog output of the DAC is used to
control the variable delay which increases or decreases the Tdly and tries to bring it
back to the reference value. Then, the compensation loop repeats itself and a series
of measurements are carried out one after the other until the error value is the lowest
and can’t be minimized any further. At that point, the stability analysis module as-
serts the error_stable output signal to the FSM. In response to that, the FSM generates
the comp_stable signal and notifies the camera control logic regarding the completion
of the compensation process. The TDC is switched off and the delay compensation
logic goes into sleep mode. The state diagram showing the compensation procedure
is presented in figure 3.6.

FIGURE 3.4: Generation of Control Signals for the Mask Bits

Note: Except for the synchronous reset (rst_sync_ni) and asynchronous reset sig-
nals (rst_ni), all other signals used in this design are active high. All the design and
verification modules are created using Verilog[12][13] and SystemVerilog[14].

3.2 Digital Debugging Features

A part of the scope of this work is to develop the debugging features for the delay
asymmetry compensation logic which help in assuring the desired functionality of
the digital part of the system and debugging it by moving through the system step
by step using the debug mode. The basic idea behind this is to provide an interactive
environment between the user and the system. The user can communicate with the
system via I2C bus. It is expected that the system operates normally during the
standard mode of operation but when the user wants to check whether something is
working as per the expectation or not, that can be achieved by asserting the debug
mode. For the system operation in debug mode, a dedicated debug state was added
to both the calibration and compensation parts of the main FSM. The debug mode
can be asserted by asserting the debug_mode signal which is accomplished by writing
1 to a particular bit of an I2C register. When the debug mode is asserted, the system
halts in the debug state. At that point, the user can decide to be in that state and
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examine some particular aspects or functionalities of the design or can decide to get
out of the debug state and debug the next measurement data by writing 1 to another
bitfield of the same I2C register which in turn asserts the debug_continue signal.

3.2.1 List of debugging features

1. Addition of TDC sampling register.

• In normal mode, TDC raw data is forwarded to the correction mask mod-
ule and gets processed in the digital part for the measurement of the Tdly.

• In debug mode, the register shifts its contents by 8-bits which is for-
warded to the I2C control unit. The shifting only occurs after each byte of
TDC data is read by the user by using the I2C register dedicated for the
TDC raw data. The I2C control unit generates a signal which is responsi-
ble for the shifting of the TDC sampling register. Here, the shifting of the
TDC raw data is synchronized with the I2C readout command.

2. Modification of the I2C control unit and generation of signal for the shifting of
TDC sampling register such that the raw data can be read out after each byte
handover between the digital part and the I2C control unit.

3. Reading out of the measurement result register.

4. Reading out of the reference result register.

5. Reading out of the stability flag register.

6. Reading out of the double sampling/blind spot compensation result.

Reading out of measurement result register, reference result register, stability flag
register and double sampliing/blind spot compensation results are implemented
in I2C registers explained in section 3.8. Registers reg_00 and reg_01 refer to mea-
surement result register, reg_04 and reg_05 refer to reference result register, reg_08
represents stability flag register and reg_2A & reg_2B & reg_2C & reg_2D & reg_2E
represent mask registers for double sampling/blind spot compensation result.

3.3 Addition of DEBUG State in the Main FSM

The principle and working of the main FSM is described earlier in a nutshell. The
two most important states of the main FSM are "calibration" and "compensation".
These are composite states and have many other states inside them. A pictoral rep-
resentation of calibration and compensation states are shown in figure 3.5 and figure
3.6, respectively. As described earlier, the system first gets calibrated according to
the set point value and then the compensation loop runs. The compensation process
tries to increase or decrease Tdly to bring it to the set point value by taking measure-
ments continously one after the other until a steady state is reached.

The inclusion of debugging features demands a dedicated DEBUG state, both in
calibration and compensation composite states. As seen from figure 3.5 and figure
3.6, when stop_latched signal goes high, indicating completion of a measurement,
tdc_sample_trig gets generated and the TDC output contents are sampled. After the
number of 1s in the TDC binary representation get calculated, the system can go to



3.4. Generation of debug_continue_edge 25

the CALIBRATION_RESET state or COMPENSATE state either directly or through
the DEBUG state. The paths through the DEBUG states are given less priority be-
cause the system is intended to be in standard mode of operation most of the times.
When debug_mode signal gets asserted, the system goes to the DEBUG state and halts
there. The only way to get out of that state is the deassertion of debug_mode signal
specifying the standard mode of operation or the assertion of debug_continue signal
specifying the continuity of debug mode. Therefore, during the next measurement,
the system again comes and halts in the DEBUG state until the conditions to get out
of that state are satisfied.

FIGURE 3.5: Inclusion of Debug State in Calibration

FIGURE 3.6: Inclusion of Debug State in Compensation

3.4 Generation of debug_continue_edge

This subsection describes how the system continues to be in debug mode even
though it gets out of the DEBUG state. How the system gets out of the DEBUG state
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by asserting debug_continue signal is described in section 3.3. By having a look at
figure 3.7, it is clear that the debug_continue signal which is an input to the FSM is
connected with debug_continue_edge, a signal that is generated on the top level of the
digital part.

FIGURE 3.7: Block Diagram of the Main FSM

FIGURE 3.8: Generation of debug_continue_edge Signal

The user asserts debug mode by writing 1 to the bitfield of reg_1D register of the
I2C control unit. This register also has another bitfield dedicated for the continu-
ation of debug mode. When that bitfield is written with 1, debug_continue signal
gets asserted which is an input from the I2C control unit to the digital part. This
should not be confused with the debug_continue signal of the main FSM because the
main FSM signal for the continuation of debug mode is actually debug_continue_edge
which gets generated from the debug_continue signal asserted by the user. In figure
3.8, the debug_continue signal is passed through a flip-flop and then a two input XOR
gate whose inputs are the debug_continue signal itself and the output of the flip-flop.
The output of the XOR gate is assigned as debug_continue_edge. The debug_continue
signal is stored in the flip-flop and becomes available at the output of the flip-flop
on the next rising edge of the clock. After debug_continue signal gets asserted by the
user, the XOR gate gets both of its inputs as 1 and produces 0 as output on the next
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rising edge of the clock of the digital part. Similarly, when debug_continue signal gets
deasserted, the XOR gate gets both of its inputs as 0 and produces 1 as output on
the next rising edge of the clock. Basically, this whole circuit works as a circuit that
toggles the debug_continue signal. Simulation results justifying this description are
shown in figure 3.9 and figure 3.10.

FIGURE 3.9: Simulation of debug_continue_edge - 1

FIGURE 3.10: Simulation of debug_continue_edge - 2

In summary, for the system operation in debug mode, the user has to write 1 to
the debug_mode and debug_continue bitfields of the dedicated I2C register. The
system goes into the DEBUG state and gets out of that state, initially. But for the next
measurement, the system halts at the DEBUG state as debug_continue_edge signal has
the value 0 because of the toggling circuit. To get out of that state, the user has to
write 0 to the debug_continue bitfield of the I2C register. Everytime the user wants
to get the debug data for the next measurement, a change of value from the last value
of debug_continue signal is required. So, the corresponding bitfield of the I2C register
needs to be changed by keeping the debug_mode at constant 1. When debug_mode is
changed to 0, the system exits debug mode and works normally in standard mode.

3.5 TDC Sampling Register

As the name defines, the primary objective of the TDC sampling register is to sam-
ple the digital output produced by the TDC. Like other modules and components of
the digital part, the TDC sampling register is also clocked with the system clock of
the digital part, i.e. 20 MHz. This sampling register is designed to behave like a
normal register consisting of 900 flip-flops in standard mode of operation. In debug
mode, it behaves as a shift register which rotates to the right in each clock cycle. To
make the operation easier and convenient, the length of the output of TDC sampling
register is designed to be in multiples of 8. This is done by appending 4 bits of 0 be-
fore the TDC raw output of 900 bits. This output is also provided as an input to the
I2C control unit which gets stored in the reg_FF_tdc register. In standard mode of
operation, the main FSM generates a control signal tdc_sample_trig which is fed as
one of the inputs to the TDC sampling register. On assertion of this control signal,
the sampling register samples and forwards the TDC raw output data to the correc-
tion mask module for further processing. The sampling register also uses another
control signal as input known as rotate_enable which is used to rotate the contents
of the shift register by 8 bits to the right. The rotate_enable signal is actually a pulse
which remains high for only one clock cycle to ensure shifting of the contents of the
sampling register once for one read operation of the reg_FF_tdc register.
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In summary, when the I2C register dedicated for the TDC raw data is read in the
debug mode, the sampling register in the digital part shifts its contents 8 bits to the
right and the next TDC raw data byte is available at the I2C register. Implementation
of this byte handover between the digital part and the I2C control unit is one of the
most important features. The block diagram of TDC sampling register is shown in
figure 3.11.

The code snippet regarding the functionality of the TDC sampling block is shown
below.

FIGURE 3.11: Block Diagram of TDC Sampling Register

always @(posedge clk_i , negedge rst_ni) begin
if (! rst_ni) begin

tdc_reg_o <= 0;
end else begin

if (sample_trig_i) begin
tdc_reg_o <= {4’h0, tdc_data_i };

end else begin
if (rotate_enable_i) begin

tdc_reg_o <= {tdc_reg_o[RotationBits -1:0],
tdc_reg_o[WidthOutCode -1:RotationBits]};

end
end

end
end

3.6 Changes in I2C Control Unit

The primary change which is done in the I2C control unit is the generation of the
control signal for the byte handover between the I2C control unit and the digital part.
This control signal is given as an input to the digital part from the I2C control unit.
In the I2C register map, described in subsection 3.8, a particular register is defined
for storing the TDC raw data- reg_FF_TDC. The purpose of the control signal is
to make the next set of TDC raw data available from the digital part for the next
read operation of this register. During debug mode, whenever the user reads the
contents of the reg_FF_tdc register to get information regarding TDC raw data, the
I2C control unit generates the control signal, notifying the readout of the said I2C
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register. Since the I2C clock is much slower than the clock of the digital part, to
ensure the byte transfer between the I2C control unit and the digital part, this control
signal is delayed by one I2C clock cycle to produce tdc_shift_ctrl_delayed signal and
fed as an input to the digital part. The code snippet for the generation and the
delaying of the control signal is shown below.

always @(posedge clk_i , negedge rst_ni) begin
if (rst_ni == 1’b0) begin

tdc_shift_control <= 1’b0;
end else begin

tdc_shift_control <= 1’b0;

if (data_active_i ==1’b1 && read_i && reg_address ==8’hFF)
begin

tdc_shift_control <= 1’b1;
end

end
end

always @(posedge clk_i , negedge rst_ni) begin
if (rst_ni == 1’b0) begin

tdc_shift_ctrl_delayed_o <= 1’b0;
end else begin

tdc_shift_ctrl_delayed_o <= tdc_shift_control;
end

end

Another major addition to the I2C control unit is the inclusion of additional reg-
isters for the implementation of the debug features. The entire I2C register map is
defined in section 3.8.

3.7 Generation of tdc_rotate_pulse

As described in section 3.6, the tdc_shift_ctrl_delayed signal which is an input to the
digital part from the I2C control unit, spans over multiple clock cycles of the clock of
the digital part. To ensure that the contents of TDC sampling register get shifted by a
byte only once for each read operation, a pulse is needed whenever a read operation
is performed on reg_FF_tdc register of I2C control unit. So, tdc_shift_ctrl_delayed
signal is passed through a simple state machine and the state machine produces a
pulse known as tdc_rotate_pulse which is fed as an input to the sampling register. The
state machine and the connection between it and the sampling register are shown in
figure 3.12 and figure 3.13, respectively. A pictoral representation of the simulation
of tdc_rotate_pulse generation is shown in figure 3.14.
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FIGURE 3.12: State Machine Generating Rotation Pulse for Sampling
Register

FIGURE 3.13: Connection Between State Machine and Sampling Reg-
ister

FIGURE 3.14: Generation of tdc_rotate_pulse

3.8 I2C Register Map

The register map provides an interactive environment between the user and the
system, in this case the testchip. With the help of these registers, the user can config-
ure the chip and communicate with it.
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Each target device on the I2C bus has an associated I2C address. The device ad-
dress of the Panoptes testchip is 0x55, i.e. 1010101. When the user wants to commu-
nicate with the testchip, it uses this address to send or receive data in the following
I2C frames. For read and write operation, 1 and 0 are appended to the end of this
address, respectively. The basic concepts of I2C protocol is described in chapter 2.
The registers used here consist of 8 bit fields. The tables from 3.1 to 3.29 contain all
the registers and their bitfields used for communication between the user and the
Panoptes testchip. The default or reset value of all the registers is 0x00. Registers
from address 0x00 to 0x08 & 0xFF are read-only registers and from 0x11 to 0x1D are
write only registers from the user point of view.

Register Name Address
reg_00 0x00
reg_01 0x01
reg_02 0x02
reg_03 0x03
reg_04 0x04
reg_05 0x05
reg_06 0x06
reg_07 0x07
reg_08 0x08
reg_2A 0x2A
reg_2B 0x2B
reg_2C 0x2C
reg_2D 0x2D
reg_2E 0x2E

reg_FF_tdc 0xFF
reg_11 0x11
reg_12 0x12
reg_13 0x13
reg_14 0x14
reg_15 0x15
reg_16 0x16
reg_17 0x17
reg_18 0x18
reg_19 0x19
reg_1A 0x1A
reg_1B 0x1B
reg_1C 0x1C
reg_1D 0x1D

TABLE 3.1: I2C Registers for Panoptes Testchip

The individual bitfields of each registers are presents in below tables.

Bit Name Access Description
7:2 - R -
0:1 binary_ff_i [9:8] R Measurement result register

TABLE 3.2: Bit-fields of reg_00
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Bit Name Access Description
7:0 binary_ff_i [7:0] R Measurement result register

TABLE 3.3: Bit-fields of reg_01

Bit Name Access Description
7 calib_running_i R Calibration running
6 calib_done_i R Calibration done
5 - R -

4:0 calib_value_wrap_i [12:8] R Wrapping measurement value

TABLE 3.4: Bit-fields of reg_02

Bit Name Access Description
7:0 calib_value_wrap_i [7:0] R Wrapping measurement value

TABLE 3.5: Bit-fields of reg_03

Bit Name Access Description
7:5 - R -
4:0 calib_value_nowrap_i [12:8] R Reference result register

TABLE 3.6: Bit-fields of reg_04

Bit Name Access Description
7:0 calib_value_nowrap_i [7:0] R Reference result register

TABLE 3.7: Bit-fields of reg_05

Bit Name Access Description
7:5 - R -
4:0 pid_y_i [12:8] R Output of PID

TABLE 3.8: Bit-fields of reg_06

Bit Name Access Description
7:0 pid_y_i [7:0] R Output of PID module

TABLE 3.9: Bit-fields of reg_07

Bit Name Access Description
7:1 - R -
0 comp_stable_i R Stability flag for compensation

TABLE 3.10: Bit-fields of reg_08
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Bit Name Access Description
7:0 mask_i [39:32] R Mask bits for TDC reg

TABLE 3.11: Bit-fields of reg_2A

Bit Name Access Description
7:0 mask_i [31:24] R Mask bits for TDC reg

TABLE 3.12: Bit-fields of reg_2B

Bit Name Access Description
7:0 mask_i [23:16] R Mask bits for TDC reg

TABLE 3.13: Bit-fields of reg_2C

Bit Name Access Description
7:0 mask_i [15:8] R Mask bits for TDC reg

TABLE 3.14: Bit-fields of reg_2D

Bit Name Access Description
7:0 mask_i [7:0] R Mask bits for TDC reg

TABLE 3.15: Bit-fields of reg_2E

Bit Name Access Description
7:0 tdc_reg_i [7:0] R TDC output data byte

TABLE 3.16: Bit-fields of reg_FF_tdc

Bit Name Access Description
7:5 - W -
4 sync_rst_o W Unused
3 clk80_int_sel_o W Unused
2 clk40_int_sel_o W Unused
1 error_i2c_sel_o W Unused
0 delay_control_i2c_sel_o W Unused

TABLE 3.17: Bit-fields of reg_11

Bit Name Access Description
7:4 - W -
3:0 delay_control_i2c_o [11:8] W Unused

TABLE 3.18: Bit-fields of reg_12
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Bit Name Access Description
7:0 delay_control_i2c_o [7:0] W Unused

TABLE 3.19: Bit-fields of reg_13

Bit Name Access Description
7:3 - W -
2:0 error_i2c_o [10:8] W Unused

TABLE 3.20: Bit-fields of reg_14

Bit Name Access Description
7:0 error_i2c_o [7:0] W Unused

TABLE 3.21: Bit-fields of reg_15

Bit Name Access Description
7:5 dexp_kp_o W Biased exponent of P part of PID
4:0 - W -

TABLE 3.22: Bit-fields of reg_16

Bit Name Access Description
7:0 kp_o W Mantissa of P part of PID

TABLE 3.23: Bit-fields of reg_17

Bit Name Access Description
7:5 dexp_ki_o W Biased exponent of I part of PID
4:0 - W -

TABLE 3.24: Bit-fields of reg_18

Bit Name Access Description
7:0 ki_o W Mantissa of I part of PID

TABLE 3.25: Bit-fields of reg_19

Bit Name Access Description
7:5 dexp_kd_o W Biased exponent of D part of PID
4:0 - W -

TABLE 3.26: Bit-fields of reg_1A

Bit Name Access Description
7:0 kd_o W Mantissa of D part of PID

TABLE 3.27: Bit-fields of reg_1B
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Bit Name Access Description
7:5 dexp_y_o W Biased exponent of output of PID
4:0 - W -

TABLE 3.28: Bit-fields of reg_1C

Bit Name Access Description
7 debug_mode_o W Mode of operation- 1: Debug, 0: Standard
6 debug_continue_o W Debug mode continuation

TABLE 3.29: Bit-fields of reg_1D

3.9 Stability Analysis

The delay asymmetry compensation logic works by regulating the variable delay
to reach a set point value. The purpose of the stability analysis block is to determine
whether the system has reached an acceptable steady state or not. If the system
reaches an acceptable steady state, then the stability analysis module generates a flag
that triggers the FSM. The FSM indicates the control logic regarding the completion
of the compensation procedure by asserting comp_stable signal.

FIGURE 3.15: Concept of Moving Average Window Function

The stability analysis module basically works on the principle of a moving av-
erage filter. Moving average calculation is based on the analysis of data points by
creating a series of averages of different selections of the complete data set. After
each measurement, the error signal is calculated and fed into the stability analysis
module as input. The absolute values of the error signals are put inside a shift reg-
ister the width of which is 16 bits. When a new measurement is carried out and the
corresponding error signal gets generated, the data in the shift register gets shifted
to the left so that the new error signal could be accommodated at the LSB of the shift
register as shown in figure 3.15.

Once the whole register is filled with data, the average is calculated. Every time
a new measurement is carried out, the new error signal comes in and the average
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changes. A particular average value is set as a parameter, on reaching which the
stability analysis module generates the stability flag which is fed as an input to the
FSM. A block diagram of the stability analysis module is shown in figure 3.16.

FIGURE 3.16: Block Diagram of Stability Analysis Module

3.10 Redesign of the PID Controller

During the compensation procedure, as new measurements are carried out, the
measurement results get stored in the measurement result register. The content of
the reference result register is treated as the set point for the compensation. So,
for each measurement, the difference between the reference result register and the
measurement result register is calculated and is known as the error signal. In other
words, the error signal is the difference between the set point value and the binary
representation of the time period measured by the TDC. This difference can be pos-
itive or negative. So, this input to the PID controller is a signed integer whose bit
width depends on the number of TDC output flip-flops. The goal of the PID con-
troller is to minimize this error signal as much as possible so that the system would
converge to the set point value. The PID compensator takes the error signal as in-
put along with the proportional, integral, and derivative gain components and pro-
duces a signed output. This output is stored in the compensation result register and
converted to analog output which in turn controls the variable delay element. The
output of the variable delay element controls the opening of the shutter, making the
entire design a closed loop system. The derivation of the mathematical formulae and
basic description of the PID controller are already given in section 2.4.1 of chapter 2.

As mentioned in table 2.2 in chapter 2, the proportional, integral and derivative
gain inputs to the PID controller are Kp, Ki and Kd, respectively. Instead of provid-
ing only one input for each of the proportional, integral and derivative parts of the
PID controller, two inputs are provided, i.e. one for the mantissa and another for
the exponent as explained in section 2.4. In other words, for mantissas mKp , mKi

and mKd , the inputs provided are kp, ki and kd, respectively. Similarly, for the bi-
ased exponents ∆eKp , ∆eKi and ∆eKd , the inputs provided are dexp_kp, dexp_ki and
dexp_kd, respectively.

The PID controller which was previously designed as part of the “Panoptes delay
asymmetry compensation logic” had some flaws. The most important flaw which
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necessitates the redesign of the controller was the timing problem. Previously, there
were timing violations on the pid_intermediate_reg which is used for the summa-
tion of the outputs of the P, I and D parts of the controller. In the previous design,
there was a barrel shifter which was used to do the calculations for the output values
of the P, I and D parts of the PID controller and that result was given to the PID state
machine for summation, the result of which was the final output of the PID con-
troller after rounding. The barrel shifter took the result of the calculation between
the mantissa and the minimum exponent for each of the P, I and D parts of the con-
troller as one input and the biased input as another input. The first input was shifted
to the left by the amount represented by the second input according to the equations
derived in section 2.4.1 and the result was supplied as an output to the PID state ma-
chine. This output result for each of the P, I and D parts was added in the PID state
machine and then rounded for the generation of the final PID output. This barrel
shifter was a combinational circuit and these set of calculations gave rise to timing
problem, creating a critical path in the PID intermediate register which was used to
store the sum of the final calculation of the P, I and D parts of the controller.

In the new approach, the calculations of the old barrel shifter are done in a se-
quential fashion to avoid the timing problem by making the critical path shorter. In
this approach, the concept and the inputs and outputs of the shifter module remain
the same but the shifting is done only once in a clock cycle and the design follows
the synchronous design approach.

This shifter is designed in such a way that it can be used across different designs
where any left shift operation between two operands is needed in a synchronous
manner. Therefore, it also adheres to the modular and reusable design practice.

To make this modular design adaptable to the Panoptes PID controller design,
some changes are made in the PID state machine. In the state machine, the calcu-
lation between the mantissa and the minimum exponent is done for each of the P, I
and D parts of the controller according to the equations derived in section 2.4.1. The
state machine keeps the calulation moving by first doing the computations for the P
part and then adding the results from the shifter module for the P part, then doing
the similar operations for the I and the D parts and finally generating the output
which is the summation of the computation outputs from all the states of the con-
troller. Additional empty states like s0, s2 and s3 are introduced between the P & I, I
& D and D & OUTPUT states so that proper handshaking between the state machine
and the shifter module can be achieved which is really essential for erroneous free
calculations.

The changed PID state machine and the new shifter module are shown in figure
3.17 and figure 3.18, respectively.
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FIGURE 3.17: Changed PID State Machine

FIGURE 3.18: Shifter Module

3.11 Addition of Bank of Flip-Flops After Error Signal

Previously, it’s mentioned that there were timing violations in the PID module. After
the addition of the new shifter module, some of the violations are mitigated but
not all. It’s observed that the path from the generation of the error signal to the
shifter module inside the PID controller is too long. The error signal generation is
combinational. To make the critical path shorter, a bank of flip-flops is introduced
which mitigates the setup violations upto a great extent. The error signal is passed
through the bank of flip-flops and the output of the flip-flops is provided as input to
the PID controller module. From figure 3.19, it shouldn’t be confused as one flip-flop,
rather it is a bank of flops used from the "Sequential" section of the "ModuleWare"
component in HDL Designer.
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FIGURE 3.19: Bank of Flip Flops After Error Signal Generation

3.12 Addition of Synchronous Reset to Digital Part

As it is explained earlier in this report, the digital part is controlled via I2C bus
protocol. But the I2C control module gets the I2C bus protocol inputs from outside
the testchip along with the asynchronous reset signal. The asynchronous reset signal
is considered as the system reset or global reset input to the testchip which resets all
other blocks along with the digital part. To reset only the digital part, a synchronous
reset is provided from the I2C control unit to the digital part and can be controlled
by the user via an I2C register. The fifth bitfield of the reg_11 register is used for
the same. The synchronous reset is provided as an input to the main FSM and the
PID module of the digital part. The FSM generates the rst_tdc_n signal as an output.
When the fifth bitfield of reg_11 is written with a value 0, the synchronous reset is
asserted which in turn asserts the rst_tdc_n reset, therefore ensuring the reset states
in TDC model, startstop generator and edge generator modules. Also, the PID state
machine goes into reset state, and thereby clearing the contents of the PID accumula-
tor and the PID intermediate register which are responsible for the final PID output.
In a nutshell, the main FSM is in reset state, the startstop pulse and the TDC don’t
generate any output. Therefore, there is nothing to measure.

This synchronous reset is the most useful during power on and debug mode. After
the release of the global asynchronous reset, the synchronous reset can be asserted
and then the PID parameters can be set by the user by writing to the dedicated I2C
registers. Once all the parameters are in place, the synchronous reset can be released
leading to a normal system operation. Synchronous reset can also be used when
only the digital part needs to be reset, but not all the other blocks.

3.13 New Calibration Approach for the Digital Part

As described earlier, the stop signal for the startstop generator is produced after
the output of the photodiode is passed through a transimpedance amplifier (TIA)
and a comparator. Upon capturing the light just after its emission, the photodiode
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converts it into current. The TIA helps the current generated by the photodiode am-
plify and convert it to an output voltage. This output of the TIA is fed through a
comparator circuit to generate the stop signal. In this application, both the TIA and
the comparator circuits are non-inverting amplifiers with unity gains. The previous
design didn’t include the effect of TIA and comparator circuits. Similarly, the pre-
vious design didn’t include the effects of the predelay element which is present just
before the TDC delay-line as stated in subsection 2.5.1. But in actual practice, the
delay associated with the presence of all these components, both individually and
combined, affect the design and performance of the calibration logic immensely. Be-
cause of these delays, the arrival time of the startstop pulse at the TDC varies. As
described earlier in chapter 2, the TDC outputs are very sensitive to the arrival time
of the startstop pulse with respect to the clock of TDC which in turn affects the mea-
surement results to a great extent.

It is evident that the compensation loop runs by taking calibration of the TDC
as a baseline. Calibration is done by taking wrapping and non-wrapping measure-
ments into consideration. These wrapping and non-wrapping measurements are
done based on the arrival time of the startstop pulse at the TDC with respect to the
clock. More explanation regarding wrapping and non-wrapping measurements is
provided in subsection 3.13.2. Different sets of reference edges are considered for
the generation of the startstop pulse. These reference edges occur at different time
instances of the TDC clock. Addition of new elements like predelay, TIA and com-
parator in the design calls for a new calibration approach. To put it briefly, the combi-
nation of all the reference edges needs to be evaluated against the delays associated
with all these elements to see which range of values of these delay combinations
produce the desired TDC output behaviour. The edge combinations also need to be
simulated with different parameters of the TDC model used in the design.

3.13.1 Edge Generator

In the previous design approach, the reference edges for calibration procedure
were generated by the startstop generator. But the introduction of the TIA and com-
parator into the design requires a separate module for generation of the reference
edges. This is because of the fact that the reference edges have to pass through the
TIA and comparator whose delays affect the performance of the design. During cal-
ibration, the start and stop signals are generated by the reference edges as explained
earlier. Since the startstop generator is clocked with a frequency of 80 MHz, these
reference edges need to be generated according to this clock. To figure out the ef-
fects of the arrival time of the startstop pulse at the TDC, multiple reference edges
need to be generated and simulated against the delays associated with the prede-
lay, TIA and comparator models. Figure 3.20 shows the different edges taken into
consideration. Since the full scale output of TDC is 25ns, the edges edge_1, edge_2,
edge_3 and edge_4 are of primary interest. After that, the cycle gets repeated. That’s
why edge_5 and edge_6 can be considered as the repeatitions of edge_1 and edge_2. In
this document, wherever edge_5 and edge_6 are used, those should be understood as
edge_1 and edge_2 of the next cycle of the 40 MHz clock. Since, a set point value of
12.5ns is chosen for the calibration of the digital part, the edges which are separated
by a time interval of 12.5ns are of primary interest. So, the combination of edge_1 &
edge_3, edge_2 & edge_4, edge_3 & edge_5 and edge_4 & edge_6 are considered primar-
ily for the simulations with respect to the delays. The code snippet regarding the
generation of the reference edges is given below.
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FIGURE 3.20: Generation of Reference Edges

always_ff@(posedge clk_80_i ,negedge rst_ni ,negedge rst_tdc_ni)
begin
if (! rst_ni || !rst_tdc_ni) begin

edge_1_o <= 1’b0;
edge_3_o <= 1’b0;
edge_5_o <= 1’b0;

end else begin
if (edge_gen_ctrl_i) begin

if (clk_40_i) begin
edge_1_o <= 1’b1;

end

edge_3_o <= edge_1_o;
edge_5_o <= edge_3_o;

end
end

end

always_ff@(posedge clk_80_inv_i ,negedge rst_ni ,negedge rst_tdc_ni)
begin
if (! rst_ni || !rst_tdc_ni) begin

edge_2_o <= 1’b0;
edge_4_o <= 1’b0;
edge_6_o <= 1’b0;

end else begin
if (edge_1_o) begin

edge_2_o <= 1’b1;
edge_4_o <= edge_2_o;
edge_6_o <= edge_4_o;

end
end

end
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The block diagram of the edge generator module is shown in figure 3.21. The
edge_gen_ctrl input to the edge generator module comes from the digital part. From
figure 3.5, the GENERATE_EDGE state of calibration generates the ref_edge signal
indicating the start of the calibration process. This signal from the digital part is
taken as an output and fed to the edge generator module as edge_ctrl as shown in
figure 3.21.

FIGURE 3.21: Block Diagram of Edge Generator Module

3.13.2 Addition of the Predelay element before the TDC

As explained in chapter 2, there are some dummy delay elements placed before
the delay-line of the TDC which don’t contrinute to the overall delay of the delay-
line. The delay associated with these elements has significant impact over the digital
calibration. That delay needed to be simulated with the reference edges to gain an
idea regarding the effect of it on the measurement outputs of the TDC. A model of
the delay element called predelay is created and the TDC clock is passed through
that delay element which signifies that the clock to the TDC is not ideal, rather it is
delayed by a non-trivial amount of time.

A simulation environment consisting of a stimulus module, the predelay element
and the model of the TDC is shown in figure 3.22. The main idea behind this simula-
tion is to find out the effect of different times, at which startstop pulses are sampled
with respect to TDC clock, on the measurement results. Reference edges and star-
top pulses generated by these reference edges are created by the stmuli module, like
the edge generator module would generate them in an actual simulation environ-
ment. Then those startstop pulses are applied to the predelay element. In the actual
simulation environment, the input to the predelay element is the 40 MHz clock and
the output from it is the delayed clock which is supplied as input clock to the TDC.
There, startstop pulses arrive with respect to the delayed TDC clock. In this simu-
lation, the TDC clock is kept ideal whereas the startstop pulses are delayed to show
the sampling of startstop pulses with respect to different phase offsets[7]. TDC out-
puts for startstop pulses generated by different reference edges are captured in the
stimuli module and are written to separate text files. Then, the contents of the text
files are plotted in MATLAB[15] to analyze the effects of predelay elements on the
measurement results considering different reference edges.
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FIGURE 3.22: Simulation Environment of Predelay Element

Before moving on to simulation results, it is essential to understand the concept
of wrapping and non-wrapping measurements. From figure 3.21, it can be seen that
the startstop pulse generated by edge_1 and edge_3 remains within the boundary
of one clock period of 40 MHz clock but the pulse generated by edge_2 and edge_4
attains zero value just when one clock period of 40 MHz clock is about to end and
the the next clock period is about to start. In other words, the negative edge of
the startstop pulse generated by edge_2 and edge_4 aligns with the negative edge of
the 40 MHz clock. But this is an ideal case. For the simulations here, the startstop
pulses are delayed by the predelay element. So, the pulse generated by edge_2 and
edge_4 would wrap around the positive edge of the 40 MHz clock. Similarly, the
pulse generated by edge_3 and edge_5 would also wrap around. TDC measurements
carried out by considering these pulses are known as wrapping measurements. The
measurements carried out by taking the pulse generated by edge_1 and edge_3 into
consideration are known as non-wrapping measurements. Wrapping measurements
justify the concept of double sampling effect described in subsection 2.5.2.

The plots of TDC outputs with respect to the delay of the predelay element for
startstop pulses generated by different edges are shown in figure 3.23. As explained
earlier, the simulation results from the above simulation environment are imported
into MATLAB for the generation of these plots. In each plot, the delay of the pre-
delay element is swept from 0ns to 5ns in 100ps intervals and the startstop pulse is
sampled in every interval. Plot- 1 corresponds to a non-wrapping measurement. So,
the output varies within 440 and 441. For the wrapping measurement in plot- 2, the
output was initially at a low value of around 440 but as time progresses, the output
value increases rapidly and then oscillates between 459 and 460. In the next plot, the
output keeps varying between 459 and 460. The increase in the output value from
around 440 to around 460 is because of the double sampling effect seen in the TDC.
In the final plot, the output value falls down from around 460 and remains at around
440. The MATLAB code for this plot is given in appendix A.
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FIGURE 3.23: Simuation of Reference Edges with Predelay Element

3.13.3 Models of TIA and Comparator

Since the TIA and the comparator are analog design blocks. Digital models of
these elements are created to simulate the effect of delays associated with these ele-
ments on digital calibration. TIA and comparator circuits are high gain amplifiers.
So, when the photodiode captures the light emitted from the laser souce, it gener-
ates current which is passed through the TIA. The TIA converts this current into a
voltage level which is then passed through the comparator circuit. The comparator
circuit compares the output voltage of the TIA with a reference voltage. If the input
voltage is higher than the reference voltage, then positive saturation voltage is gen-
erated as output which is known as the stop signal. The code from the model of TIA
and comparator is shown below.

‘resetall
‘timescale 1ns/10ps
module non_inverting_amplifier #(

parameter real DelayNs = 0
)(

input logic sig_i ,
output logic sig_o

);

initial begin
sig_o = 0;

end

always @* begin
sig_o <= #( DelayNs)sig_i;

end

endmodule
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3.13.4 Reference Selector

This module selects the reference edges for measurements in the calibration pro-
cess. After the CALIBRATION_RESET state in figure 3.5, the non-wrapping or wrap-
ping measurement is carried out depending on the measurement_select signal. The
reset value of that signal is 0, which means that whenever the system starts the cal-
ibration process, it always gets started with non-wrapping measurements. After
eight consecutive measurements, the results are averaged and stored in the measur-
ment result register. Then, measurement_select is incremented and wrapping mea-
surements are carried out.

For wrapping and non wrapping measurements, the startstop pulses need to be
generated by different sets of reference edges as explained earlier. The measure-
ment_select output from the digital part drives the sel_measurement input of the refer-
ence selctor module which selects the appropriate reference edges. The code snippet
is given below and the block diagram of the reference selector module is shown in
figure 3.24.

always_comb begin
case (sel_measurement_i)

2’b00: begin
ref_shutter_o = edge_1_i;
ref_laser_o = edge_3_i;

end
2’b01: begin

ref_shutter_o = edge_3_i;
ref_laser_o = edge_5_i;

end
default: begin

ref_shutter_o = edge_1_i;
ref_laser_o = edge_3_i;

end
endcase

end

FIGURE 3.24: Block Diagram of Reference Selector Module

3.13.5 Effect of Delays of TIA, Comparator and Predelay on Reference
Edges

Simulating reference edges only with predelay element is not enough. To get a
deeper understanding of how the TDC outputs behave with different reference edge
combinations, the startstop pulses generated by different edge combinations need to
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be simulated with the models of the TIA, comparator and predelay altogether. The
simulation environment is shown in figure 3.25.

In this simulation environment, the stimulus block generates all necessary signals
which would have been generated by the digital part in actual operation. Apart
from these signals, it also generates a delay signal which is provided as inputs to
the TIA and comparator modules. So, the basic goal of this simulation is to vary
the delays of the TIA and comparator models and see the effect of those delays on
the TDC outputs. The delay of the predelay element is kept at a value of 3ns. This
delay is also varied and many simulations are run to see the combined effect of the
predelay, TIA, comparator delay values on the outputs of the TDC model. It can be
noticed that the output of the predelay element is fed to the clock of the TDC model
as explained before.

The PLL and the power_on_reset modules generate all the clock signals and re-
set signal necessary for all blocks. The edge generator module generates reference
edges which are provided as inputs to the reference selector module. Depending on
the value of sel_measurement signal from the stimulus module, the reference selector
selects the edges. The ref_shutter signal is applied at the start input of the startstop
generator and the ref_shutter signal is provided as input to the TIA. The output of the
TIA is connected to the input of the comparator module and the comparator gener-
ates the stop signal which is provided to the startstop generator. By taking start and
stop inputs, the startstop generator generates the startstop pulse and it is provided
to the TDC for measurment. The output from the TDC is provided as input to the
stimulus block. It captures the measurment results and writes those into a text file.

FIGURE 3.25: Simulation Environment Containing All Delay Ele-
ments

To plot the measurment results in a more convenient way, the above approach is
tweaked a bit. Since, the TIA and comparator blocks are just models of the actual
circuits and it is intended to observe the effect of their dalys on the measurement
results, a single block having the combined delays of both of these elements can be
considered. So, instead of having two separate blocks and two separate delay inputs
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to each of these blocks, only one block is considered which gets the combined delays
of the TIA and comparator models as one input from the stimulus block. After the
stimulus block captures the measurement results, 3D plots are generated in MAT-
LAB where the measurement results are plotted against the delay of the predelay
element on one axis and the combined delays of the TIA and comparator on another
axis.

The plots for the measurement results of the startstop pulses generated by two
specific reference edges were not enough to select the reference edges and decide
the range of delay values for the TIA, comparator and predelay elements. To visu-
lalize the results more perspicuously, the difference plots for startstop pulses created
by two sets of reference edges were plotted. It’s evident that the range of the delay
values corresponding to the flat area can be taken into consideration. Some differ-
ence plots and their respective explanations are presented below.

In figure 3.26, it can be seen that the flat area doesn’t start from 0ns for both the
axes- delay of predelay and the combined delay of the TIA and comparator. For
example, the flat area starts from around 2ns value for the combined delays of TIA
and comparator when the predelay value is around 0ns but it starts from around
6ns and lasts upto some value when the predelay value is around 3ns. So, different
values of delays of the predelay element put minimum constraints on the combined
delays of TIA and comparator which is not good for practical implementations.

FIGURE 3.26: Difference Plot for edge_1 & edge_3 and edge_2 & edge_4

In figure 3.27, the flat area starts from 0ns for both the axes. But it can be seen
that the differences in the measurement results for the startstop pulses generated
by edge_3 & edge_5 and edge_4 & edge_2 are always around 0. But there is a need
for non-zero difference in the measurement results to show the double sampling
behaviour of the TDC. So, these set of reference edges are also not suitable for the
new calibration approach.
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FIGURE 3.27: Difference Plot for edge_3 & edge_5 and edge_4 & edge_2

FIGURE 3.28: Difference Plot for edge_2 & edge_4 and edge_4 & edge_2

In figure 3.28, the flat area doesn’t start from 0ns for the combined delays of TIA
and comparator. Also, the flat area corresponds to 0 difference level in the mea-
surement results for the startstop pulses generated by edge_2 & edge_4 and edge_4 &
edge_2. So, these sets of edges are also discarded.

In figure 3.29, the flat area starts from 0ns for both the axes and lasts upto some
value. With increase in the delay value of the predelay element upto 6ns, the value
of the combined delays of TIA and comparator corresponding to the flat area also
increases from 7ns to 12ns. So, this plot is the most suitable one among all other
plots shown previously. From the analog simulations of the TDC, predelay and post
delay elements, it is observed that the delay value for the predelay element would
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be between 1.5ns to 3ns. From figure 3.30, it can be clearly seen that for a predelay
value of around 3ns, the combined delay of TIA and comparator can range from 0ns
to 9ns which can be realised in practice.

FIGURE 3.29: Difference Plot- 1 for edge_1 & edge_3 and edge_3 &
edge_5

FIGURE 3.30: Difference Plot- 2 for edge_1 & edge_3 and edge_3 &
edge_5

To consolidate the selection of reference edges, some futher simulations need to
be carried out for different settings of the TDC model. From figure 3.22, it can be
clearly seen that the TDC model has a number of parameters. The parameters Ref-
Clk, NTDC, OutputDelay, DelayClkPeriodError and AddRandomLSBs are clock
frequency in MHz, number of flip-flops of the TDC, delay to produce output after
the application of input at the flip-flops of a delay element of the TDC, how slow
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or fast the delay-line is and change in the performance of TDC due to any reason,
respectively. Among these parameters, DelayClkPeriodError has a significant effect
on the measurement results. This is in accordance with the fact that the blind spot
and double sampling phenomena observed in the TDC are because of how fast or
slow the delay-line is. The value of the DelayClkPeriodError is changed and some
extra plots are generated.

FIGURE 3.31: Difference Plot- 1 for edge_1 & edge_3 and edge_3 &
edge_5 for Different TDC Parameters

FIGURE 3.32: Difference Plot- 2 for edge_1 & edge_3 and edge_3 &
edge_5 for Different TDC Parameters
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FIGURE 3.33: Difference Plot- 3 for edge_1 & edge_3 and edge_3 &
edge_5 for Different TDC Parameters

It can be observed that in figure 3.31, 3.32 and 3.33, the flat regions start from 0ns
for both the axes and show different levels of differences in the measurement results.
So, it can be safely assumed that the reference edge sets edge_1 & edge_3 and edge_3 &
edge_5 can be considered for the new calibration approach where the startsop pulses
generated by edge_1 & edge_3 and edge_3 & edge_5 correspond to non-wrapping and
wrapping measurements, respectively.

Note: - As described earlier, edge_5 and edge_1 are more or less the same reference
edges as edge_6 and edge_2. To avoid confusion while plotting the results, the names
edge_1 and edge_2 are used.
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Chapter 4

Verification and Implementation

4.1 Verification

4.1.1 Verification Environment for the Digital Part

After the digital part and the models of other components are ready, they are inter-
connected and put together in the testbench environment for simulation to ensure
that the digital part works correctly and behaves as expected. The simulation is
carried out by considering all the factors and parameters that could affect the per-
formance and functionalities of the system as a whole. All the corner cases are taken
into consideration during the simulation as if the system exists in actual working en-
vironment where the operating conditions can change at anytime. Figure 4.1 shows
the testbench environment to verify the performance and functionalities of the digi-
tal part.

FIGURE 4.1: Simulation Environment for the Digital Part

From figure 4.1, it can be seen that the two multiplexers START_MUX and STOP_MUX
are used in the simulation environment. These multiplexers are used to differenti-
ate between the measurements done in the calibration state and those done in the
compensation state as described in section of chapter 3. After startup, when the
system recovers from the power on reset, reference edges are generated in the edge
generator module for the calibration process. Depending on wrapping and non-
wrapping measurements, different sets of reference edges are selected by the refer-
ence selector module. The control input ref_sel to the START_MUX and STOP_MUX
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is connected to the output signal from the main FSM which signifies whether the
system is in calibration or compensation process. When the system is in calibra-
tion, the START_MUX and STOP_MUX select ref_shutter and ref_laser as start and
stop signals, respectively but when in compensation, the signals shutter_detect and
laser_after_driver are considered.

After the calibration process is complete, the signals calib_done and calib_running
are assigned to logic HIGH and logic LOW states by the system, respectively. Then,
the system goes into the compensation process after mask bits are added to the 900-
bit digital code. During the compensation process, the start and stop signals for the
startstop generator are generated by the shutter and laser pulses. After the compen-
sation is done, the system reaches stability and the digital part goes to sleep mode.
The simulation result justifying this description is shown in figure 4.2. It is evident
that the Cursor 2 at 20425ns shows the completion of the calibration process. The
Cursor 1 at 97225ns shows the comp_stable signal going to a logic HIGH state, indi-
cating the completion of the compensation process.

FIGURE 4.2: Simulation Results of the Digital Part

Since in an actual environment, the operating conditions might change, it is impor-
tant to observe the quality of compensation for all corner cases by varying different
parameters like shutter and laser driver delays, DelayClkPeriodError of TDC etc.
To observe the quality of compensation, the system is forced to leave the sleep mode
and the system reset is asserted from the testbench, thereby starting it again from the
initial state of the main FSM. Laser and shutter pulses are applied from the testbench
like the camera would generate them in actual operation. To control the shutter and
laser driver delays by providing different delay values to them, delay_shutter and
delay_laser signals are supplied as inputs to those models. After that, the delay be-
tween the laser emitting light and shutter opening is measured from the testbench
but not using the TDC. For different delay values of shutter and laser drivers, the
system is observed to be minimizing the error and bouncing back to the set point
value. The same process is repeated for different values of the DelayClkPeriodError
parameter of the TDC. The system is observed to be attaining stability for a wide
range of positive values of DelayClkPeriodError and the variation from the set point
value is within 100ps. But for the negative values beyond 250ps, it is observed that
the system attains stability and the variation from the set point value is between



4.1. Verification 55

200-300ps. It is stated previously in chapter 3 that in order to achieve a depth res-
olution in the centimeter range, Td needs to be measured with an accuracy below
approximately 100ps for each pixel independently. This is possible if the value of
the DelayClkPeriodError parameter of the TDC model is greater than -250ps. The
simulation result justifying the quality of the compensation process is shown in fig-
ure 4.3. It can be seen that the system attains stability for different delay values of
the shutter and laser drivers.

FIGURE 4.3: Simulation Showing the Quality of Compensation

4.1.2 Verification Environment for the Testchip

Figure 4.4 shows the top level simulation of the testchip. The testchip contains
the models of all the components along with the digital part and the I2C control
unit as shown in figure 4.5. The testchip is connected to the STIMULUS module
which contains the self-checking testbench to verify that the entire system functions
correctly over the I2C bus lines. In this setup, the testchip is the slave device. The
STIMULUS module imitates the master device by generating the I2C clock signal
for the testchip slave device. The testchip also receives the global asynchronous
reset signal from the STIMULUS model for simulation purposes which in real life
environment would be supplied from outside as system reset.

FIGURE 4.4: Top-Level Simulation of the Testchip
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FIGURE 4.5: Components inside the Testchip

As described in subsection 2.6.1 of chapter 2, I2C clock and data lines are con-
nected to the supply voltage through a pull-up resistor. To imitate that behavior, the
sda_io line is connected to the pullup primitive. To mimic the I2C SDA line and en-
sure data transmission between the testchip and the STIMULUS module, the sda_io
is a bi-directional signal here. For successful data transfer between the testchip and
the STIMULUS module for verification purposes, a tristate pad model is added in
between them, the code of which is the following:

module tristate_pad (
input wire sda_o ,
output wire sda_i ,
inout tri1 sda_io
);

assign sda_io = (sda_o == 0) ? 1’b0 : 1’bz;

assign sda_i = sda_io;

endmodule

The Digital_Top inside the testchip contains the digital part along with the I2C
control unit as shown in figure 4.6.
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FIGURE 4.6: Digital Top level

4.1.3 Self Checking Testbench

The STIMULUS module of the top level testbench environment of the testchip
contains the self-checking testbench which corresponds to the realistic test cycle for
the final verification of the testchip. It simulates a complete test cycle of the actual
chip without the need for running manual checks on different aspects of the chip.
There are different tasks inside this self-checking testbench which ensure automated
checks for different aspects of the chip and generate error messages in case of failed
operations. These error messages can be viewed in the simulator log or can be writ-
ten into an output file. The operations carried out via these tasks happen over the
I2C bus lines. The steps involved in the implementation of this self-checking test-
bench are in the following order:

• Resetting the chip.

• Asserting synchronous reset.

• Setting necessary PID parameters.

• Enabling debug mode.

• Deasserting synchronous reset.

• Stepping through the calibration process using the signals dedicated for debug
mode of operation.

– Reading results of each calibration measurment.

– Reading out the TDC register and the binary result and comparing them.

– Comparing the output of the TDC sampling result with the pre-bubble
and post-bubble correction values and checking for bubble errors and
their corrections.

• Reading the calibration results, mask bits and calculating the combined delay
of TIA and comparator after the calibration process is complete.
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• Stepping through the compensation process by using the signals dedicated for
debug mode of operation.

– Reading results of each measurment.

– Reading out of the TDC register and the binary result and comparing
them.

– Checking the visibility of double sampling effect.

– Checking whether the double sampling and bubble error correction work
properly or not.

– Calculating the number of cycles to attain stability.

• Calculating the output of the PID after stability is reached.

• Disbaling debug mode and letting the system run freely.

The tasks which facilitates smooth verification and code readability of the self-
checking testbench are described briefly here.

• task write_bit: This task is used by the master STIMULUS module to write
the individual bits of the slave testchip device address, register address and to
send NACK signal in case of completion of an I2C read transaction.

• task read_bit: This task is used by the master to read the ACK signal coming
from the slave and also to read the individual bits of the content of a register
in case of an I2C read transaction.

• task set_regaddr: This task is used to set the address of the register to be read.
It uses write_bit and read_bit tasks. The input argument to this task is the
address of the respective register.

• task write_reg: This task is used to write to a particular register. It also uses
write_bit and read_bit tasks. The input arguments to this task are the address
of the register to be written to and the data value which the user wants to write.

• task read_reg_value: This task is used to read the contents of the register, the
address of which is set by the task set_regaddr task. The output argument of
this task is the value of the respective register.

• task set_PID_params: This task is used to set all the parameters necessary for
the PID operation. All these PID parameters are set by writing to the dedicated
registers for PID operation.

• task measurement_result: This task is used to read the value of the measure-
ment result register.

• task reference_result: This task is used to read the value of the reference result
register.

• task mask_readout: This task is used to read the mask bits for double sam-
pling/blind spot compensation.

• task read_calib_info: This task is used to read the status of the calibration pro-
cess by reading the flags which represent whether calibration is done or still
running.
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• task read_PID_output: This task is used to read the PID output value.

• task read_stability_info: This task is used to read the stability flag which indi-
cates whether the system has attained stability or not.

• task change_debug_continue: This task is used to toggle the debug signal re-
sponsible for the continuation of the system in debug mode.

• task double_sampling_check: This task is used to monitor if there is any dou-
ble sampling in the thermometer code.

• task read_tdc_reg_value: This task is used to read the entire conents of the
TDC sampling register output.

• task tdc_binary_val_count: This task is used to evaluate the binary represen-
tation of the thermometer code.

• task calibration_state_debug: With the help of debug mode, this task is used
to step through the calibration process and measure all the aspects of each
measurement by using all of the above mentioned tasks.

• task result_after_calibration: This task is used to read the measurement result,
reference result and the mask bits after the calibration process is finished.

• task compensation_state_debug: With the help of debug mode, this task is
used to step through the compensation process and measure all the aspects of
each measurement by using all of the above mentioned tasks.

The simulaion result for the testchip in the normal mode of operation is shown
in figure 4.7. The system is observed to be attaining stability at 386525ns. For the
testchip operation in normal mode, the system reset and the synchronous reset are
asserted first. Then, the necessary PID parameters are set. Then, the value 8’h00 is
written to the reg_1D register and the synchronous reset is deasserted. The portion
of the code of the self-checking testbench after the deassertion of the synchronous
reset is commented out for the system operation in normal mode.

FIGURE 4.7: Simulation of the Testchip in Normal Mode of Operation
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For the system operation in debug mode, the debug_mode and debug_continue
bit-fields of the reg_1D register are asserted and the code segment which was com-
mented out before is uncommented. The simulation result for the testchip operation
in debug mode is shown in figure 4.8.

FIGURE 4.8: Simulation of the Testchip in Debug Mode of Operation

The transcript window of the simulator containing the debug outputs of the sys-
tem in debug mode are presented here. Figure 4.9 shows the start of the calibration
process and the debug outputs associated with it. These debug outputs are gener-
ated as the results of the tasks used for the debugging of the system which are de-
scribed previously. After eight non-wrapping and eight wrapping measurements,
the calibration process gets completed and the compensation process starts which
can be seen in figure 4.11. The compensation loop runs until the Td value gets set-
tled around the set point value of 12.5ns. After the stability flag is asserted by the
stability analysis module, the compensation process gets completed and the number
of compensation cycles required to achieve stability and the final output of the PID
controller are displayed as debug outputs which can be seen in figure 4.12.



4.1. Verification 61

FIGURE 4.9: Calibration Debug Outputs- 1
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FIGURE 4.10: Calibration Debug Outputs- 2
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FIGURE 4.11: Calibration & Compensation Debug Outputs
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FIGURE 4.12: Compensation Debug Outputs

4.2 Implementation

After the design is successfully verified, it has to undergo a series of steps before
the production of the final chip. After the design successfully passes through all the
steps, the GDSII file is generated and released to the fabs for manufacturing of the
chip which is known as tapeout. The entire design flow and the individual steps are
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described in detail as part of the previous work[16]. In this work presented here,
the main focus is on the Engineering Change Order (ECO) and re-importing the
modified netlist into IC Compiler to remove potential timing violations.

Engineering Change Order is a method to patch or modify the gate level, post
synthesized version of a design. It is used to accommodate last minute design revi-
sions and changes. When some changes occur during the later stages of the design
implementation, may it be an RTL bug fix or addition of some extra portions of RTL
code, it might cause problems during the signoff phase. To circumvent the idea of
re-implementing the entire design, ECO comes in handy which is cost effective and
saves time and effort.

During the final part of the design flow, the design is observed to have setup and
hold time violations in sign-off STA. To remove those violations, a number of steps
are carried out which also involve the inclusion of the script file for fixing timing vi-
olations and inclusion of additional Synopsys commands[17] in the implementation
script to automate the ECO flow. A number of changes are also adopted to the usual
design flow. Addition of the new script for fixing timing violations and the changes
made to the existing implementation script are described later. The steps followed
and the changes made in the flow in mitigating the timing violations are jotted down
below.

• In the Synopsys Design Constraints (SDC) file, the clock uncertainties corre-
sponding to setup and hold times are removed and included in a separate
TCL[18] script intended for setup and hold violations fixing which is called as
signoff_pt.tcl.

• Then, the synthesis and implementation flow are run followed by parasitic
extraction by using the respective commands and scripts as described in the
previous work[16].

• After that, PrimeTime shell is opened for running sign-off STA. For setup and
hold time analyses, primetime_max.tcl and primetime_min.tcl scripts are run and
timing violations are observed.

• To fix the timing violations, signoff_pt.tcl is run after it is sourced into Prime-
Time shell. This script generates an output file eco_pt.tcl containing all the
changes to be made to the existing netlist for fixing the violations. Usually,
these types of files contain addition of buffers, inverter pairs, cell sizing infor-
mation etc. based on the Synopsys commands used in the script.

• PrimeTime is closed and the implemented design is opened in IC Compiler
again if it has been closed previously. To incorporate the changes generated
by PrimeTime into the existing netlist, the modified and newly added cells
contained in eco_pt.tcl need to be placed and routed in IC Compiler.

• To do so, eco_pt.tcl file is imported into IC Compiler by using the command
eco_netlist -by_tcl_file followed by the name of the file i.e. eco_pt.tcl.

• After that, the ECO flow needs to be run on the design in IC Compiler to merge
the contents of eco_pt.tcl into the existing netlist. The entire ECO flow is put
inside a procedure named flow_step_eco_signoff and the procedure is added
in the implementation script icc_flow.tcl. To run the ECO flow, this procedure
needs to be executed in IC Compiler.
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• After the ECO flow is complete, parasitic extraction procedure is carried out on
the changed netlist by using the StarRC command. After parasitic extraction
is complete, the tool writes relevant information into SPEF file formats which
are used by PrimeTime for timing analysis.

• The timing scripts primetime_max.tcl and primetime_min.tcl are run in Prime-
Time shell and it is found that all the timing violations are removed. Prime-
Time writes all the timing information into SDF files.

4.2.1 Addition of New Script for Fixing Timing Violations

The newly added script signoff_pt.tcl contains Synopsys commands for fixing setup
and hold violations present in the design. The commands used in the script are de-
scribed here.

• set_clock_uncertainty -hold 0.5 [get_clocks "clk"] : This command is used to
specify the uncertainty or skew for hold time of the specified clock network.

• set_clock_uncertainty -setup 1 [get_clocks "clk"] : This command is used to
specify the skew for setup time of the clock network driven by clk.

• fix_eco_timing -type setup -cell_type {combinational} -pba_mode exhaustive
-methods {size_cell_side_load} -verbose : This command is used for fixing the
timing violations. It uses some switches followed by arguments, the functions
of which are described below.

– -type : Specifies the type of timing violations the tool is trying to fix,
which in this case are setup violations, justified by the argument "setup".

– -cell_type : Specifies the type of cells to be modified for timing fixing. The
default argument is "combinational" where fixing is performed by sizing
or inserting combinational logic cells in the data path.

– -pba_mode : Specifies the mode of the timing analysis. The argument "ex-
haustive" performs an exhaustive path based analysis to determine worst
case paths in the design. This is the most computation intensive and ac-
curate mode.

– -methods : Specifies one or more fixing methods. "size_cell_side_load"
argument replaces cells in the timing path with logically identical cells
having a different drive strength. It also replaces cells in the fanout of
drivers in the path with logically identical cells to reduce parasitic load
capacitance along the path. This argument can only be used for setup
fixing but not hold fixing.

– -verbose : Shows additional information during the process of fixing. It
also generates the report which has the violations that can’t be fixed if the
eco_report_unfixed_reason_max_endpoints variable is set to a positive
integer in PrimeTime shell.

• fix_eco_timing -type setup -cell_type {sequential} -pba_mode exhaustive
-methods {size_cell} -verbose : This command is the same as above with same
switches having different arguments. The arguments are described here.

– "sequential" : Timing fixing is performed by sizing sequential cells to fix
the violations at input or output pins of the cells. Only the "size_cell"
fixing method is supported for this type of fixing.
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– "size_cell" : It only replaces cells in the timing path with logically identical
cells having a different drive strength.

• fix_eco_timing -type hold -buffer_list {BF BF2 BF3 BF4 BF5 BF8 DEL10
SCHMTT25} -pba_mode exhaustive -methods {size_cell insert_buffer}
-verbose : This timing fixing is carried out for fixing hold violations as speci-
fied by the argument "hold" of the switch -type.

– -buffer_list : Specifies the list of library buffer cells. It is used along with
the "insert_buffer" method. There is no default list of buffers and this
switch must be specified along with the list of buffers from the library.

– -methods {size_cell insert_buffer} : This command can insert a buffer
from the buffer list specified above and then size it to a different buffer,
even if the sized library cell is not explicitly included in the -buffer_list
option.

• fix_eco_timing -type setup -methods remove_buffer : Delay cells and buffers
placed by the hold fixing command might affect setup paths. To remove the
redundant buffers that give rise to setup violations without worsening or in-
troducing hold violations, "remove_buffer" method is used. In setup fixing, it
can’t be used with other methods and must be used by itself.

• write_changes -format icctcl -output eco_pt.tcl : This command writes out
the modifications performed in netlist. The -format switch specifies the output
file format and the argument "icctcl" specifies that the output file format is a
tcl script for IC Compiler or IC Coompiler II. The -output switch writes the
change list to the specified file, which here is eco_pt.tcl.

• update_timing : This command updates timing information on the current
design. This command is used multiple times in the script to ensure that the
timing information gets updated after every stage of timing fixing.

4.2.2 Addition of Commands in Implementation Script for ECO Flow

This subsection describes different commands that are used as part of the ECO
flow in IC Compiler.

• remove_stdcell_filler -stdcell : This command deletes standard cells, end cap
cells, tap filler cells and pad cells. To incorporate the changes into existing
design netlist, these cells need to be removed first, so that there is room for
accomodating the changes.

– -stdcell : Used to remove the standard cell filler cells.

• derive_pg_connection : This command connects power, ground and tie-off
pins to the specified power and ground nets.

• place_eco_cells -eco_changed_cells : This command is used to perform coarse
placement and legalization on ECO cells in the design.

– -eco_changed_cells : Places all the cells with eco_change_status attribute
that has values create_cell, insert_buffer, size_cell etc.

• legalize_placement -effort high : This command executes detailed placement
on the design.
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– -effort : Specifies the effort level for detailed placement, which in this case
is high, justified by the argument.

• insert_stdcell_filler -cell_without_metal "DECAP16 FSTDS8 FSTDS4
FSTDS2 FSTDS" -connect_to_power {VDD} -connect_to_ground {GND} :
This command is used to fill empty spaces in standard cell rows with filler
cells.

– -cell_without_metal : Specifies the list of filler cells to be used. The filler
cells which don’t contain metal, also known as nonmetal filler cells, must
be used. The filler cells from Elmos library are specified inside the quotes.

– -connect_to_power : Specifies the name of the existing power net to which
the filler cells should be connected. Here, the name of the power net is
VDD.

– -connect_to_ground : Specifies the name of the existing ground net to
which the filler cells should be connected. Here, the name of the ground
net is GND.

• route_zrt_eco -reroute modified_nets_first_then_others
-max_detail_route_iterations 5 : This command is used to perform ECO rout-
ing on the design.

– -reroute : Controls which nets are rerouted. The argument used after this
switch describes that the router first freezes all the fully connected nets
and tries to finish the routing by modifying only the nets with open ECO
changes. If still some violations remain, the router tries to reroute the fully
connected nets to resolve the violations.

– -max_detail_route_iterations : Specifies the maximum number of de-
tailed routing iterations, which in this case is 5.

• save_mw_cel : This command saves the specified design in Milkyway format.

• write_verilog post_icc.v : Writes a hierarchical Verilog file for the current de-
sign, the name of which is post_icc.v here.

• write_verilog -pg -force_no_output_references "WELLTAPS FSTDS16
FSTDS8 FSTDS4 FSTDS2 FSTDS" post_icc_pg.v : This is the same command
as above with different switches which are described below.

– -pg : Writes power and ground nets and ports for all cell and module
instances.

– -force_no_output_references : Specifies the reference cell names for which
the cell instances must not be written. These cell names are specified in-
side the quotes, separated by space characters.

• write_verilog -no_physical_only_cells post_icc_no_phys.v : The switch used
here is -no_physical_only_cells which prevents writing of physical-only cell
instances.

• extract_rc -incremental : This command executes 2.5D extraction for routes in
the design.

– -incremental : Performs incremental RC extraction based on the last ex-
traction. It only works with a detailed routed design.
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• write_parasitics -no_name_mapping : This command is used to write para-
sitics to a disk file for delay calculation tools.

– -no_name_mapping : Specifies that the net name is used directly in the
file. This option is valid only when the parasitics are written in SPEF
format. Actual net names are used in the SPEF file when this switch is
specified.

4.2.3 Results Before the ECO Flow

During the implementation stage, a number of steps like floorplanning, place-
ment, routing, clock tree synthesis, optimizations, timing analysis etc. are performed
on the design. After the implementation flow is complete, the layout of the design
gets generated. The commands report_timing -delay min and report_timing -delay
max are run in the IC Compiler shell to display the timing information for the min
and max corner analysis, otherwise known as the hold and setup analysis, respec-
tively. The timing reports of the min and max corner analysis are presented here.

****************************************
Report : timing

-path full
-delay min
-max_paths 1

Design : Digital_Top
Scenario(s): minmax
Version: Q-2019.12-SP5-1
Date : Sun Aug 27 17:59:37 2023
****************************************

* Some/all delay information is back-annotated.
Wire Load Model Mode: Inactive.

Scenario : minmax
Parasitic source : LPE
Parasitic mode : RealRC
Extraction mode : MULTI_CORNER
Extraction derating : -40/150

Information: Percent of Arnoldi-based delays = 32.16% on scenario
minmax

Startpoint: i2c_cntrl/U_6/U_0/reg_1D/data_o_reg[6]
(rising edge-triggered flip-flop clocked by i2c_clk’)

Endpoint: DIGITAL_PART/mw_U_6reg_cval_reg
(rising edge-triggered flip-flop clocked by clk)

Scenario: minmax
Path Group: clk
Path Type: min

Point Incr Path Voltage
------------------------------------------------------------------
clock i2c_clk’ (rise edge) 500.00 500.00
clock network delay (propagated) 1.25 501.25
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i2c_cntrl/U_6/U_0/reg_1D/
data_o_reg[6]/C (DFSRLQ) 0.00 501.25 r 3.60

i2c_cntrl/U_6/U_0/reg_1D/
data_o_reg[6]/Q (DFSRLQ) 2.39 503.63 f 3.60

DIGITAL_PART/mw_U_6reg_cval_reg/
D (DFSRLQ) 0.00 & 503.63 f 3.60

data arrival time 503.63

clock clk (rise edge) 500.00 500.00
clock network delay (propagated) 2.27 502.27
DIGITAL_PART/mw_U_6reg_cval_reg/

C (DFSRLQ) 0.00 502.27 r
library hold time -0.55 501.73
data required time 501.73
------------------------------------------------------------------
data required time 501.73
data arrival time -503.63
------------------------------------------------------------------
slack (MET) 1.90

Startpoint: i2c_cntrl/U_6/Protocolunit/counter/counter_reg[0]
(rising edge-triggered flip-flop clocked by i2c_clk)

Endpoint: i2c_cntrl/U_6/Protocolunit/counter/counter_reg[0]
(rising edge-triggered flip-flop clocked by i2c_clk)

Scenario: minmax
Path Group: i2c_clk
Path Type: min

Point Incr Path Voltage
------------------------------------------------------------------
clock i2c_clk (rise edge) 0.00 0.00
clock network delay (propagated) 1.25 1.25
i2c_cntrl/U_6/Protocolunit/counter/

counter_reg[0]/C (DFSHSL)
0.00 1.25 r 3.60

i2c_cntrl/U_6/Protocolunit/counter/
counter_reg[0]/Q (DFSHSL)

1.16 2.41 r 3.60
U2153/O (NAND2XL) 0.44 & 2.85 f 3.60
i2c_cntrl/U_6/Protocolunit/counter/

counter_reg[0]/D (DFSHSL)
0.00 & 2.85 f 3.60

data arrival time 2.85

clock i2c_clk (rise edge) 0.00 0.00
clock network delay (propagated) 1.25 1.25
i2c_cntrl/U_6/Protocolunit/counter/

counter_reg[0]/C (DFSHSL)
0.00 1.25 r

library hold time -0.42 0.83



4.2. Implementation 71

data required time 0.83
------------------------------------------------------------------
data required time 0.83
data arrival time -2.85
------------------------------------------------------------------
slack (MET) 2.02

****************************************
Report : timing

-path full
-delay max
-max_paths 1

Design : Digital_Top
Scenario(s): minmax
Version: Q-2019.12-SP5-1
Date : Sun Aug 27 17:55:31 2023
****************************************

* Some/all delay information is back-annotated.
Wire Load Model Mode: Inactive.

Scenario : minmax
Parasitic source : LPE
Parasitic mode : RealRC
Extraction mode : MULTI_CORNER
Extraction derating : -40/150

Information: Percent of Arnoldi-based delays = 32.16% on scenario
minmax

Startpoint: DIGITAL_PART/reg_tdc/tdc_reg_o_reg[225]
(rising edge-triggered flip-flop clocked by clk)

Endpoint: DIGITAL_PART/binary_ff_o_reg[8]
(rising edge-triggered flip-flop clocked by clk)

Scenario: minmax
Path Group: clk
Path Type: max

Point Incr Path Voltage
------------------------------------------------------------------
clock clk (rise edge) 0.00 0.00
clock network delay (propagated) 2.76 2.76
DIGITAL_PART/reg_tdc/

tdc_reg_o_reg[225]/C (EDFMHRLQ)
0.00 2.76 r 3.00

DIGITAL_PART/reg_tdc/
tdc_reg_o_reg[225]/Q (EDFMHRLQ)

1.61 4.37 r 3.00
U629/O (INV) 1.14 & 5.51 f 3.00
U631/O (NOR2XL) 1.48 & 6.99 r 3.00
U676/O (AND21OXL) 2.00 & 8.99 f 3.00
U1003/CO (FADD) 1.51 & 10.50 f 3.00
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U1000/S (FADD) 2.40 & 12.90 r 3.00
U1218/S (FADD) 2.51 & 15.41 f 3.00
U1475/S (FADD) 2.44 & 17.85 r 3.00
U1570/S (FADD) 2.70 & 20.55 f 3.00
U1628/S (FADD) 2.53 & 23.08 r 3.00
U1673/CO (FADD) 2.32 & 25.40 r 3.00
U1671/CO (FADD) 0.97 & 26.37 r 3.00
U1662/S (FADD) 2.44 & 28.80 f 3.00
U1670/S (FADD) 2.41 & 31.22 r 3.00
U1688/CO (FADD) 2.10 & 33.31 r 3.00
U1686/S (FADD) 2.27 & 35.59 f 3.00
U2939/CO (FADD) 1.90 & 37.49 f 3.00
U2938/CO (FADD) 0.98 & 38.47 f 3.00
U2937/CO (FADD) 1.01 & 39.48 f 3.00
U2936/CO (FADD) 1.01 & 40.49 f 3.00
U2935/S (FADD) 2.43 & 42.92 r 3.00
DIGITAL_PART/binary_ff_o_reg[8]/

D0 (EDFMHRLQ) 0.03 & 42.95 r 3.00
data arrival time 42.95

clock clk (rise edge) 50.00 50.00
clock network delay (propagated) 2.65 52.65
DIGITAL_PART/binary_ff_o_reg[8]/

C (EDFMHRLQ) 0.00 52.65 r
library setup time -1.57 51.08
data required time 51.08
------------------------------------------------------------------
data required time 51.08
data arrival time -42.95
------------------------------------------------------------------
slack (MET) 8.12

Startpoint: DIGITAL_PART/MASK/mask_reg[37]
(rising edge-triggered flip-flop clocked by clk)

Endpoint: i2c_cntrl/U_6/Protocolunit/shift_reg_out/shift_reg_reg[5]
(rising edge-triggered flip-flop clocked by i2c_clk’)

Scenario: minmax
Path Group: i2c_clk
Path Type: max

Point Incr Path Voltage
------------------------------------------------------------------
clock clk (rise edge) 450.00 450.00
clock network delay (propagated) 2.71 452.71
DIGITAL_PART/MASK/mask_reg[37]/

C (EDFMHRLQ) 0.00 452.71 r 3.00
DIGITAL_PART/MASK/mask_reg[37]/

Q (EDFMHRLQ) 2.02 454.73 r 3.00
U6013/O (AND22OXL) 1.34 & 456.07 f 3.00
U6014/O (INV) 0.76 & 456.83 r 3.00
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U6015/O (AND21OXL) 1.43 & 458.25 f 3.00
U6017/O (OR211AXL) 1.32 & 459.58 r 3.00
U6023/O (AND211OXL) 1.48 & 461.06 f 3.00
U6024/O (NAND3XL) 1.82 & 462.88 r 3.00
U6025/O (AND211OXL) 1.33 & 464.21 f 3.00
U6026/O (OR2N2AXL) 0.72 & 464.93 r 3.00
i2c_cntrl/U_6/Protocolunit/
shift_reg_out/shift_reg_reg[5]/

D0 (EDFMHRLQ)
0.00 & 464.93 r 3.00

data arrival time 464.93

clock i2c_clk’ (rise edge) 500.00 500.00
clock network delay (propagated) 1.70 501.70
i2c_cntrl/U_6/Protocolunit/
shift_reg_out/shift_reg_reg[5]/

C (EDFMHRLQ)
0.00 501.70 r

library setup time -1.38 500.32
data required time 500.32
------------------------------------------------------------------
data required time 500.32
data arrival time -464.93
------------------------------------------------------------------
slack (MET) 35.40

To display the information about the number of combinational and sequential cells
used and the area occupied by them, the command report_area is run. The informa-
tion regarding the number of cells and area is presented here.

Library (s) Used:
ELMOSOU35HD_ SS (File: /eda/kits/ELMOS/L035/pdk/athen/3.0.3/

L035_libraries/ELMOSOU35HD/db/elmos0u35hd_ss.db)
Number of ports: 931
Number of nets: 9242
Number of cells: 7244
Number of combinational cells: 5688
Number of sequential cells: 1556
Number of macros/black boxes: 0
Number of buf/inv: 1998
Number of references: 66

Combinational area: 565064.816017
Buf/Inv area: 87619.969374
Noncombinational area: 465785.505920
Macro/Black Box area: 0.000000
Net Interconnect area: undefined (No wire load specified)

Total cell area: 1030850.321938
Total area: undefined
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The layout of the design is shown in figure 4.13.

FIGURE 4.13: Layout Window of IC Compiler Before ECO

After the implementation flow is run and the layout is generated in IC Compiler,
parasitic extraction is carried out on the design to create an accurate analog model of
the circuit, so that detailed simulations can emulate actual digital and analog circuit
responses. For calculating the delays, one should be aware of the resistances, ca-
pacitances, inductances etc. of the design network. The extraction tool used for this
purpose is StarRC. After the parasitic extraction is carried out, signoff STA is carried
out in PrimeTime. The Timing analysis for the min and max corners are shown in
figure 4.14 and figure 4.15, respectively.

FIGURE 4.14: Timing Analysis of the Min Corner Before ECO
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FIGURE 4.15: Timing Analysis of the Max Corner Before ECO

Since PrimeTime is an accurate signoff engine and gives the exact timing informa-
tion, the command report_timing -delay min is run in the PrimeTime shell for the
min corner analysis of the design after sourcing the primetime_min.tcl script. Simi-
larly, the command report_timing -delay max is run in the shell for the max corner
analysis after sourcing the primetime_max.tcl script. The results are presented here.

****************************************
Report : timing
-path_type full
-delay_type min
-max_paths 1
-sort_by slack
Design : Digital_Top
Version: Q-2019.12-SP1
Date : Sun Aug 27 19:38:18 2023
****************************************

Startpoint: i2c_cntrl/U_6/U_0/reg_1D/data_o_reg[6]
(rising edge-triggered flip-flop clocked by i2c_clk’)

Endpoint: DIGITAL_PART/mw_U_6reg_cval_reg
(rising edge-triggered flip-flop clocked by clk)

Path Group: clk
Path Type: min

Point Incr Path
--------------------------------------------------------------------
clock i2c_clk’ (rise edge) 500.00 500.00
clock network delay (propagated) 0.48 500.48
i2c_cntrl/U_6/U_0/reg_1D/data_o_reg[6]/

C (DFSRLQ) 0.00 500.48 r
i2c_cntrl/U_6/U_0/reg_1D/data_o_reg[6]/
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Q (DFSRLQ) 0.90 & 501.39 f
DIGITAL_PART/mw_U_6reg_cval_reg/

D (DFSRLQ) 0.00 & 501.39 f
data arrival time 501.39

clock clk (rise edge) 500.00 500.00
clock network delay (propagated) 2.58 502.58
clock reconvergence pessimism 0.00 502.58
DIGITAL_PART/mw_U_6reg_cval_reg/

C (DFSRLQ) 502.58 r
library hold time -0.15 502.42
data required time 502.42
--------------------------------------------------------------------
data required time 502.42
data arrival time -501.39
--------------------------------------------------------------------
slack (VIOLATED) -1.03

****************************************
Report : timing
-path_type full
-delay_type max
-max_paths 1
-sort_by slack
Design : Digital_Top
Version: Q-2019.12-SP1
Date : Sun Aug 27 19:34:55 2023
****************************************

Startpoint: DIGITAL_PART/reg_tdc/tdc_reg_o_reg[225]
(rising edge-triggered flip-flop clocked by clk)

Endpoint: DIGITAL_PART/binary_ff_o_reg[8]
(rising edge-triggered flip-flop clocked by clk)

Last common pin: INV5_G1B10I2/O
Path Group: clk
Path Type: max

Point Incr Path
--------------------------------------------------------------------
clock clk (rise edge) 0.00 0.00
clock network delay (propagated) 2.79 2.79
DIGITAL_PART/reg_tdc/
tdc_reg_o_reg[225]/C (EDFMHRLQ)

0.00 2.79 r
DIGITAL_PART/reg_tdc/
tdc_reg_o_reg[225]/Q (EDFMHRLQ)

1.61 & 4.41 r
U629/O (INV) 1.29 & 5.70 f
U631/O (NOR2XL) 1.62 & 7.32 r
U676/O (AND21OXL) 2.21 & 9.53 f
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U1003/CO (FADD) 1.58 & 11.11 f
U1000/S (FADD) 2.42 & 13.53 r
U1218/S (FADD) 2.54 & 16.07 f
U1475/S (FADD) 2.47 & 18.54 r
U1570/S (FADD) 2.76 & 21.30 f
U1628/S (FADD) 2.58 & 23.88 r
U1673/CO (FADD) 2.36 & 26.23 r
U1671/CO (FADD) 0.98 & 27.22 r
U1662/S (FADD) 2.44 & 29.66 f
U1670/S (FADD) 2.43 & 32.09 r
U1688/CO (FADD) 2.12 & 34.21 r
U1686/S (FADD) 2.29 & 36.50 f
U2939/CO (FADD) 1.93 & 38.42 f
U2938/CO (FADD) 1.01 & 39.43 f
U2937/CO (FADD) 1.03 & 40.46 f
U2936/CO (FADD) 1.03 & 41.49 f
U2935/S (FADD) 2.65 & 44.14 r
DIGITAL_PART/binary_ff_o_reg[8]/

D0 (EDFMHRLQ) 0.03 & 44.17 r
data arrival time 44.17

clock clk (rise edge) 50.00 50.00
clock network delay (propagated) 0.92 50.92
clock reconvergence pessimism 0.11 51.03
DIGITAL_PART/binary_ff_o_reg[8]/

C (EDFMHRLQ) 51.03 r
library setup time -1.68 49.35
data required time 49.35
--------------------------------------------------------------------
data required time 49.35
data arrival time -44.17
--------------------------------------------------------------------
slack (MET) 5.19

It can be observed that the system has no setup violations but there are hold vio-
lations. The setup violations which existed previously are mitigated by the redesign
of the PID controller and the addition of the bank of flip-flops after the generation
of the error signal which are described in section 3.10 and section 3.11 of chapter 3,
respectively.

4.2.4 Results After the ECO Flow

To mitigate the timing violations, the ECO flow is run on the design. It is evi-
dent that the addition of the new cells as part of the ECO flow affects the combina-
tional area, sequential area, area occupied by the buffers and inverter pairs as well
as the number of nets, cells, buffers and inverter pairs. The timing information also
changes. After the newly added cells are placed and routed in IC Compiler, the re-
spective commands are run to extract the timing and area information as described
in section 4.2.3. The results are presented here.

****************************************
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Report : timing
-path full
-delay min
-max_paths 1

Design : Digital_Top
Scenario(s): minmax
Version: Q-2019.12-SP5-1
Date : Sun Aug 27 18:35:30 2023
****************************************

* Some/all delay information is back-annotated.
Wire Load Model Mode: Inactive.

Scenario : minmax
Parasitic source : LPE
Parasitic mode : RealRC
Extraction mode : MULTI_CORNER
Extraction derating : -40/150

Information: Percent of Arnoldi-based delays = 30.74% on scenario
minmax

Startpoint: DIGITAL_PART/Stability/error_reg_reg[8][6]
(rising edge-triggered flip-flop clocked by clk)

Endpoint: DIGITAL_PART/Stability/error_reg_reg[9][6]
(rising edge-triggered flip-flop clocked by clk)

Scenario: minmax
Path Group: clk
Path Type: min

Point Incr Path Voltage
------------------------------------------------------------------
clock clk (rise edge) 0.00 0.00
clock network delay (propagated) 2.20 2.20
DIGITAL_PART/Stability/

error_reg_reg[8][6]/C (EDFMHRLQ)
0.00 2.20 r 3.60

DIGITAL_PART/Stability/
error_reg_reg[8][6]/Q (EDFMHRLQ)

1.56 3.75 f 3.60
DIGITAL_PART/Stability/

error_reg_reg[9][6]/D0 (EDFMHRLQ)
0.00 & 3.75 f 3.60

data arrival time 3.75

clock clk (rise edge) 0.00 0.00
clock network delay (propagated) 2.20 2.20
DIGITAL_PART/Stability/

error_reg_reg[9][6]/C (EDFMHRLQ)
0.00 2.20 r

library hold time -0.58 1.62
data required time 1.62
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------------------------------------------------------------------
data required time 1.62
data arrival time -3.75
------------------------------------------------------------------
slack (MET) 2.13

Startpoint: i2c_cntrl/U_6/Protocolunit/counter/counter_reg[0]
(rising edge-triggered flip-flop clocked by i2c_clk)

Endpoint: i2c_cntrl/U_6/Protocolunit/counter/counter_reg[0]
(rising edge-triggered flip-flop clocked by i2c_clk)

Scenario: minmax
Path Group: i2c_clk
Path Type: min

Point Incr Path Voltage
------------------------------------------------------------------
clock i2c_clk (rise edge) 0.00 0.00
clock network delay (propagated) 1.25 1.25
i2c_cntrl/U_6/Protocolunit/

counter/counter_reg[0]/C (DFSHSL)
0.00 1.25 r 3.60

i2c_cntrl/U_6/Protocolunit/
counter/counter_reg[0]/Q (DFSHSL)

1.16 2.41 r 3.60
U2153/O (NAND2XL) 0.44 & 2.85 f 3.60
i2c_cntrl/U_6/Protocolunit/

counter/counter_reg[0]/D (DFSHSL)
0.00 & 2.85 f 3.60

data arrival time 2.85

clock i2c_clk (rise edge) 0.00 0.00
clock network delay (propagated) 1.25 1.25
i2c_cntrl/U_6/Protocolunit/

counter/counter_reg[0]/C (DFSHSL)
0.00 1.25 r

library hold time -0.42 0.83
data required time 0.83
------------------------------------------------------------------
data required time 0.83
data arrival time -2.85
------------------------------------------------------------------
slack (MET) 2.02

****************************************
Report : timing

-path full
-delay max
-max_paths 1

Design : Digital_Top
Scenario(s): minmax
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Version: Q-2019.12-SP5-1
Date : Sun Aug 27 18:33:55 2023
****************************************

* Some/all delay information is back-annotated.
Wire Load Model Mode: Inactive.

Scenario : minmax
Parasitic source : LPE
Parasitic mode : RealRC
Extraction mode : MULTI_CORNER
Extraction derating : -40/150

Information: Percent of Arnoldi-based delays = 30.74% on scenario
minmax

Startpoint: DIGITAL_PART/FSM/current_state_reg[0]
(rising edge-triggered flip-flop clocked by clk)

Endpoint: DIGITAL_PART/reg_tdc/tdc_reg_o_reg[889]
(rising edge-triggered flip-flop clocked by clk)

Scenario: minmax
Path Group: clk
Path Type: max

Point Incr Path Voltage
------------------------------------------------------------------
clock clk (rise edge) 0.00 0.00
clock network delay (propagated) 2.69 2.69
DIGITAL_PART/FSM/

current_state_reg[0]/C (DFSRLQ) 0.00 2.69 r 3.00
DIGITAL_PART/FSM/

current_state_reg[0]/Q (DFSRLQ) 1.89 4.58 f 3.00
U_PTECO_HOLD_BUF437/O (BF) 2.11 & 6.69 f 3.00
U1482/O (INV) 2.18 & 8.87 r 3.00
U1707/O (NAND2XL) 2.31 & 11.18 f 3.00
U1711/O (INV) 1.37 & 12.55 r 3.00
U1709/O (OR2N2AXL) 1.02 & 13.57 r 3.00
U1737/O (BF3) 2.12 @ 15.69 r 3.00
U1758/O (BF2) 2.36 @ 18.05 r 3.00
U1759/O (INV) 0.68 @ 18.72 f 3.00
U3724/O (NAND2) 0.48 & 19.20 r 3.00
U1788/O (BF3) 1.85 @ 21.05 r 3.00
U1793/O (BF2) 3.00 @ 24.05 r 3.00
U3754/O (OR2N2AXL) 2.52 @ 26.57 f 3.00
U_PTECO_HOLD_BUF144/O (BF8) 0.99 & 27.56 f 3.00
U_PTECO_HOLD_BUF659/O (DEL10) 15.84 & 43.39 f 3.00
DIGITAL_PART/reg_tdc/

tdc_reg_o_reg[889]/D0 (EDFMHRLQ)
0.00 & 43.39 f 3.00

data arrival time 43.39

clock clk (rise edge) 50.00 50.00
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clock network delay (propagated) 2.64 52.64
DIGITAL_PART/reg_tdc/

tdc_reg_o_reg[889]/C (EDFMHRLQ)
0.00 52.64 r

library setup time -1.34 51.31
data required time 51.31
------------------------------------------------------------------
data required time 51.31
data arrival time -43.39
------------------------------------------------------------------
slack (MET) 7.91

Startpoint: DIGITAL_PART/FSM/calib_value_wrap_o_cld_reg[10]
(rising edge-triggered flip-flop clocked by clk)

Endpoint: i2c_cntrl/U_6/Protocolunit/shift_reg_out/shift_reg_reg[2]
(rising edge-triggered flip-flop clocked by i2c_clk’)

Scenario: minmax
Path Group: i2c_clk
Path Type: max

Point Incr Path Voltage
------------------------------------------------------------------
clock clk (rise edge) 450.00 450.00
clock network delay (propagated) 2.57 452.57
DIGITAL_PART/FSM/

calib_value_wrap_o_cld_reg[10]/C (DFSRLQ)
0.00 452.57 r 3.00

DIGITAL_PART/FSM/
calib_value_wrap_o_cld_reg[10]/Q (DFSRLQ)

2.07 454.64 r 3.00
U_PTECO_HOLD_BUF18/O (DEL10) 16.53 & 471.17 r 3.00
U5951/O (AND22OXL) 0.92 & 472.08 f 3.00
U5953/O (NAND4XL) 1.05 & 473.13 r 3.00
U5967/O (NOR3XL) 1.19 & 474.32 f 3.00
U5968/O (OR2N2AXL) 0.68 & 474.99 r 3.00
i2c_cntrl/U_6/Protocolunit/

shift_reg_out/shift_reg_reg[2]/D0 (EDFMHRLQ)
0.00 & 475.00 r 3.00

data arrival time 475.00

clock i2c_clk’ (rise edge) 500.00 500.00
clock network delay (propagated) 1.50 501.50
i2c_cntrl/U_6/Protocolunit/

shift_reg_out/shift_reg_reg[2]/C (EDFMHRLQ)
0.00 501.50 r

library setup time -1.37 500.13
data required time 500.13
------------------------------------------------------------------
data required time 500.13
data arrival time -475.00
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------------------------------------------------------------------
slack (MET) 25.13

Library (s) Used:
ELMOSOU35HD_ SS (File: /eda/kits/ELMOS/L035/pdk/athen/3.0.3/

L035_libraries/ELMOSOU35HD/db/elmos0u35hd_ss.db)
Number of ports: 931
Number of nets: 9912
Number of cells: 7914
Number of combinational cells: 6358
Number of sequential cells: 1556
Number of macros/black boxes: 0
Number of buf/inv: 2668
Number of references: 70

Combinational area: 710407.589951
Buf/Inv area: 232962.743307
Noncombinational area: 465785.505920
Macro/Black Box area: 0.000000
Net Interconnect area: undefined (No wire load specified)

Total cell area: 1176193.095871
Total area: undefined

After the addition of the new cells into the existing netlist, the placement of the
cells and the routing interconnects change. As a result, the layout also changes. The
layout of the design after the addition of new cells is shown in figure 4.16.

FIGURE 4.16: Layout Window of IC Compiler After ECO

After the newly added cells are placed and routed, parasitic extraction needs to
be carried out on the changed netlist for accurate delay calculations. After running
the parasitic extraction in StarRC, the signoff STA is carried out in PrimeTime. These
steps are similar to the steps described in section 4.2.3. The signoff STA of the min
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and max corners are carried out and the results are shown in figure 4.17 and figure
4.18, respectively. The timing reports are also presented. It can be seen that there are
no more hold violations after the ECO flow is performed on the design.

FIGURE 4.17: Timing Analysis of the Min Corner After ECO

FIGURE 4.18: Timing Analysis of the Max Corner After ECO

****************************************
Report : timing
-path_type full
-delay_type min
-max_paths 1
-sort_by slack
Design : Digital_Top
Version: Q-2019.12-SP1
Date : Sun Aug 27 18:45:19 2023



84 Chapter 4. Verification and Implementation

****************************************

Startpoint: i2c_cntrl/U_6/Protocolunit/shift_reg_out/shift_reg_reg[3]
(rising edge-triggered flip-flop clocked by i2c_clk’)

Endpoint: i2c_cntrl/U_6/Protocolunit/shift_reg_out/shift_reg_reg[4]
(rising edge-triggered flip-flop clocked by i2c_clk’)

Last common pin: INV4_G1B6I3_1/O
Path Group: i2c_clk
Path Type: min

Point Incr Path
--------------------------------------------------------------------
clock i2c_clk’ (rise edge) 500.00 500.00
clock network delay (propagated) 0.48 500.48
i2c_cntrl/U_6/Protocolunit/

shift_reg_out/shift_reg_reg[3]/C (EDFMHRLQ)
0.00 500.48 r

i2c_cntrl/U_6/Protocolunit/
shift_reg_out/shift_reg_reg[3]/Q (EDFMHRLQ)

0.55 & 501.04 f
U6007/O (OR2N2AXL) 0.38 & 501.42 f
i2c_cntrl/U_6/Protocolunit/

shift_reg_out/shift_reg_reg[4]/D0 (EDFMHRLQ)
0.00 & 501.42 f

data arrival time 501.42

clock i2c_clk’ (rise edge) 500.00 500.00
clock network delay (propagated) 1.62 501.62
clock reconvergence pessimism -0.12 501.49
i2c_cntrl/U_6/Protocolunit/

shift_reg_out/shift_reg_reg[4]/C (EDFMHRLQ)
501.49 r

library hold time -0.15 501.34
data required time 501.34
--------------------------------------------------------------------
data required time 501.34
data arrival time -501.42
--------------------------------------------------------------------
slack (MET) 0.07

****************************************
Report : timing
-path_type full
-delay_type max
-max_paths 1
-sort_by slack
Design : Digital_Top
Version: Q-2019.12-SP1
Date : Sun Aug 27 18:41:14 2023
****************************************
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Startpoint: DIGITAL_PART/FSM/current_state_reg[0]
(rising edge-triggered flip-flop clocked by clk)

Endpoint: DIGITAL_PART/reg_tdc/tdc_reg_o_reg[889]
(rising edge-triggered flip-flop clocked by clk)

Last common pin: INV5_G1B10I2/O
Path Group: clk
Path Type: max

Point Incr Path
--------------------------------------------------------------------
clock clk (rise edge) 0.00 0.00
clock network delay (propagated) 2.75 2.75
DIGITAL_PART/FSM/current_state_reg[0]/

C (DFSRLQ) 0.00 2.75 r
DIGITAL_PART/FSM/current_state_reg[0]/

Q (DFSRLQ) 1.91 & 4.66 f
U_PTECO_HOLD_BUF437/O (BF) 2.26 & 6.92 f
U1482/O (INV) 2.32 & 9.24 r
U1707/O (NAND2XL) 2.51 & 11.76 f
U1711/O (INV) 1.47 & 13.23 r
U1709/O (OR2N2AXL) 1.03 & 14.26 r
U1737/O (BF3) 2.34 & 16.60 r
U1758/O (BF2) 2.50 & 19.10 r
U1759/O (INV) 0.71 & 19.81 f
U3724/O (NAND2) 0.50 & 20.31 r
U1788/O (BF3) 2.05 & 22.35 r
U1793/O (BF2) 3.23 & 25.58 r
U3754/O (OR2N2AXL) 2.71 & 28.30 f
U_PTECO_HOLD_BUF144/O (BF8) 1.02 & 29.32 f
U_PTECO_HOLD_BUF659/O (DEL10) 15.87 & 45.19 f
DIGITAL_PART/reg_tdc/tdc_reg_o_reg[889]/

D0 (EDFMHRLQ)
0.00 & 45.19 f

data arrival time 45.19

clock clk (rise edge) 50.00 50.00
clock network delay (propagated) 0.93 50.93
clock reconvergence pessimism 0.11 51.04
DIGITAL_PART/reg_tdc/tdc_reg_o_reg[889]/

C (EDFMHRLQ) 51.04 r
library setup time -1.40 49.64
data required time 49.64
--------------------------------------------------------------------
data required time 49.64
data arrival time -45.19
--------------------------------------------------------------------
slack (MET) 4.45
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Chapter 5

Conclusion and Future Work

The goal of this thesis was to introduce the ToF camera technology and the prin-
ciple that lies underneath the concept and development of the delay asymmetry
compensation logic of Panoptes Testchip. Furthermore, it describes the ideas and
principles behind the addition of extra hardware logic for the debugging features
that facilitate an interactive environment for the user to identify any abnormal op-
eration, in case there occurs any. Also, the concepts and principles elaborated in
this thesis give an idea regarding the measurement of distance in centimeter range.
All these concepts and principles cater to the need of "intelligent mobility" for au-
tonomous driving functionalities.

There are certain areas in the existing design where further improvements can be
possible. Since outputs of TDC are very sensitive to the arrival time of startstop
pulse which in turn affects the measurement results, the TDC can be redesigned for
an optimal solution. The digital part can be further optimized to reduce gate counts
which in turn reduces area and cost. The PID controller designed for the system
is complex as well as extremely powerful which serves more than what the system
demands. So, a fairly simpler PID module could be designed. The AllowedAbsErr
parameter of the stability analysis module greatly influences the time of assertion
of the stability flag which has an impact on the overall system performance. There-
fore, the effects of varying this parameter with respect to the parameters of the TDC
model as well as the delays of TIA, comparator, predelay element, shutter and laser
drivers can be studied further and more simulations can be carried out to further
improve the whole system. The implementation scripts used for the backend digial
design could be further improved. Interrupt signals can be generated in case of any
erroneous operations. Also, some additional test logic can be introduced into the
digital part. To make the design verification more robust and efficient, a SystemVer-
ilog testbench environment can be created. By using the components like driver,
monitor, scoreboard etc., this SystemVerilog ’layered testbench’ approach can facil-
itate the generation of random stimulus to catch hidden bugs in the design. Also,
assertion based verification can be introduced to increase the functional coverage.
Since functional safety is of utmost concern in case of automotive applications, some
additional design concepts could be introduced for the same.

Achieving high precision in the centimeter range for distance measurement is still
a challenge. This research project incorporates innovative research concepts and
methodologies to address that issue and results in an improvement in the accu-
racy of ToF distance measurement. Moreover, this thesis along with the previous
works[3][16][6] can provide with a great learning opportunity for someone who is
new to the field of digital design.
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Appendix A

MATLAB Code for Plotting TDC
Outputs with respect to Predelay

x = linspace(0, 5000, 51);
time = (0:100*10^ -12:5*10^ -9) ’;
startstop_edge1_edge3 = importdata(’tdc_count_edge1_edge3.

txt’);
subplot (2,2,1)
plot(x,startstop_edge1_edge3)
ylim ([435 465])
title(’Startstop pulse - edge\_1 & edge\_3’)
xlabel(’Pre delay time in ps’)
ylabel(’TDC\_reg count ’)

startstop_edge3_edge5 = importdata(’tdc_count_edge3_edge5.
txt’);

subplot (2,2,3)
plot(x,startstop_edge3_edge5)
ylim ([435 465])
title(’Startstop pulse - edge\_3 & edge\_5’)
xlabel(’Pre delay time in ps’)
ylabel(’TDC\_reg count ’)

startstop_edge2_edge4 = importdata(’tdc_count_edge2_edge4.
txt’);

subplot (2,2,2)
plot(x,startstop_edge2_edge4)
ylim ([435 465])
title(’Startstop pulse - edge\_2 & edge\_4’)
xlabel(’Pre delay time in ps’)
ylabel(’TDC\_reg count ’)

startstop_edge4_edge6 = importdata(’tdc_count_edge4_edge6.
txt’);

subplot (2,2,4)
plot(x,startstop_edge4_edge6)
ylim ([435 465])
title(’Startstop pulse - edge\_4 & edge\_6’)
xlabel(’Pre delay time in ps’)
ylabel(’TDC\_reg count ’)
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