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Abstract 

Growing demand for security in a wide range of fields gives raise to research for 

more efficient and modern methods. Additionally, the increase of systems that 

are deployed on hardware requires security to be embedded in small area to 

protect intellectual property, hardware, and integrity and confidentially of sensible 

data. Therefore, in this work a design and FPGA implementation of a highly 

resource-efficient AES-256 encryption and decryption engine is presented, as 

well as its comparison with state-of-the-art designs. The design shows a 

reduction in the resources used due to its architecture to reuse hardware 

throughout all the processing. The design is implemented on a Xilinx Artix-7 

FPGA. 

Keywords: Advance Encryption Standard (AES), encryption, decryption, Field 

Programmable Gate Array (FPGA), low-area, hardware security.  
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1 Introduction 

The advance of technology allows a wide range of fields to implement modern 

solutions to common problems that were extremely complex to solve or 

demanded an excessive number of resources. These solutions often require 

processing large amount of sensible data that must be protected from malicious 

use. Moreover, deploying applications on hardware gives rise to modern threats, 

thus increasing the importance of reliable security solutions to provide 

confidentiality using as few resources as possible. 

Not protecting the design properly may result in other companies learning 

from the design and developing new features or products from it, this is called 

reverse engineering. This process reduces initial investment for research and 

development and for continuous improvement. Competitors will also save time to 

release the product to market. From a military perspective the enemy will be able 

to produce counterattacks knowing beforehand what to expect. 

If the attacker obtains the design and the intention is not to understand 

how it works but only its functional operation, the design can be copied and be 

released with a different name, this is known as cloning. The design does not 

need to be deeply analysed to be used for different applications. As a result of 

lack of understanding, further tests might be incomplete or incorrectly applied for 

validation. In safety-critical systems the consequences of using cloned designs 

may directly impact human lives.  

Overbuilding is another threat that can impact a company. The 

unauthorized production of the identical device with the same name can saturate 

customer service without producing any revenue for the company. 
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The last threat to mention is tampering, which can be used to some degree 

in the concepts explained above. Tampering starts with the unauthorized access 

to the system and to the design to subsequently extract sensible data or to modify 

the functionality of the device. 

 Due to all the threats mentioned above, encryption of data has become a 

famous solution to provide confidentiality to sensible and private information. As 

a result, in 2001 the National Institute of Standards and Technology (NIST) 

defined the Advance Encryption Standard (AES) [1] to be used for encryption and 

decryption. Since then, researchers have proposed different designs and 

implementations for AES. This work presents a design and FPGA implementation 

of a highly-resource efficient encryption and decryption engine employing the 

Advance Encryption Standard (AES) with a 256-bit key. 

In chapter 2, important mathematical concepts to understand AES are 

addressed, such as operations in Galois Fields and structures of ciphers. Chapter 

3 focuses on algorithms that can be implemented to provide security. In chapter 

4 techniques used by Xilinx to provide protection to designs implemented on their 

FPGAs are described. Chapter 5 explains the structure and operations of AES. 

The basis of the Rijndael design is explained in detail in chapter 6 to motivate 

each design decision. Chapter 7 explains the conventional implementation of the 

AES algorithm. Various implementations of AES designs on FPGAs from different 

authors are described in Chapter 8, whereas in chapter 9 the proposed 

implementation is explained. Chapter 10 explains the implementation of AES for 

encryption and chapter 11 the implementation for decryption. The simulations 

performed on the designs are described in chapter 12. Chapter 13 explains the 

test done on Xilinx Artix-7 FPGA for both encryption and decryption with the 

creation of a GUI. The results obtained from the designs are compared and 

discussed with other works in chapter 14. In chapter 15 the conclusions are 

discussed and in chapter 16 future work is proposed. 
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2 Mathematical Preliminaries 

2.1 Finite Fields 

A field with a finite number of elements is called finite field. The order of a finite 

filed is the number of elements contained in the field. A field is considered to be 

of order 𝑚 if and only if 𝑚 = 𝑝𝑛 , where 𝑝 is a prime integer and 𝑛 any integer, in 

other words, if and only f 𝑚 is a prime power. If this is the case, 𝑝 is named the 

characteristic of the finite field. Finite fields with order 𝑝𝑛 are denoted by 𝐺𝐹(𝑝𝑛), 

whose elements can be represented by integers 0, 1, … 𝑝𝑛 − 1. 

For finite fields with prime order 𝐺𝐹(𝑝) with elements 0, 1, …  𝑝 − 1 the 

addition and multiplication operation can be represented by “integer addition 

modulo 𝑝” and “integer multiplication modulo 𝑝”. Rijndael represents finite fields 

𝐺𝐹(𝑝𝑛) with 𝑛 > 1 using polynomials over 𝐺𝐹(𝑝) to achieve representing 

operations via modulo [2]. 

2.2 Polynomials over a Field 

A polynomial over a field 𝐹 is represented by the indeterminate 𝑥 and the 

coefficients of the polynomial 𝑏𝑗 ∈ 𝐹 as follows: 

𝑏(𝑥) = 𝑏𝑛−1𝑥
𝑛−1 + 𝑏𝑛−2𝑥

𝑛−2 +··· +𝑏2𝑥
2 + 𝑏1𝑥 + 𝑏0 (1) 

 

The degree of the polynomial is defined by 𝑙 if 𝑏𝑗  =  0, ∀𝑗 >  𝑙, and 𝑙 is the 

smallest number with this property. 𝐹[𝑥] is the representation of the set of 

polynomials over a field 𝐹. If the degree of the set is below 𝑙 it can be represented 
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by 𝐹[𝑥]|𝑙. It is important to remark the difference between the degree of the set 

of polynomials 𝑙 and the order of the finite field 𝑚. 

Example 2.1. Let field 𝐹 be 𝐺𝐹(𝑝) with order 𝑚 = 𝑝 = 2 and elements 0, 1 and 

let 𝐹[𝑥]|𝑙 be the set of polynomials over field 𝐺𝐹(2) with degree below 𝑙 = 8. The 

last element in the set of polynomials 𝐺𝐹(2)|8 is the polynomial with all its 

coefficients equal to the last element in field 𝐺𝐹(2), which is element  1. The 

polynomial is then expressed as follows: 

𝑥7 + 𝑥6 + 𝑥5 + 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1 

Considering that the coefficients of the polynomial can be represented by 

a string of bits 𝑏7𝑏6𝑏5𝑏4𝑏3𝑏2𝑏1𝑏0, the polynomials in the set 𝐺𝐹(2)|8 can be stored 

as bytes. The polynomial mentioned above corresponds to value FF in 

hexadecimal. Therefore, the set of polynomials 𝐺𝐹(𝑝)|𝑛 contains 𝑝𝑛 elements. 

Example 2.2. The byte 11 represented in hexadecimal can also be represented 

as the polynomial: 

𝑥4 + 1. 

The set of polynomials 𝐺𝐹(𝑝)|𝑛 can be used to do operations on bytes if 

the structure (𝐺𝐹(𝑝)|𝑛, +,∙) meets the requirements to be considered a field. In 

this case, the field can be denoted by 𝐺𝐹(𝑝𝑛). 

2.3 Operations on Set of Polynomials 𝑮𝑭(𝒑)|𝒏 

2.3.1 (𝑮𝑭(𝒑)|𝒏, +) becoming an Abelian group 

To consider structure (𝐺𝐹(𝑝)|𝑛, +,∙) a field, operations (+,∙) on elements in the 

set 𝐺𝐹(𝑝)|𝑛 must be defined to satisfy the required properties (See Appendix A). 

1. (𝐺𝐹(𝑝)|𝑛, +,∙) must be a commutative ring. 
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2. An inverse element in set 𝐹 with respect to operation (∙) exists for all 

elements of 𝐹, except for the neutral element of (𝐹,+) denoted by 𝟎. 

However, to meet property 1 operation (+) must be defined first for elements 

in the set of polynomials 𝐺𝐹(𝑝)|𝑛, so that structure (𝐺𝐹(𝑝)|𝑛, +) can be 

considered an Abelian group. 

Operation (+) can be defined as addition of polynomials summing the coefficients 

with same powers of 𝑥: 

𝑐(𝑥) =  𝑎(𝑥) +  𝑏(𝑥) ⇔  𝑐𝑖  =  𝑎𝑖  +  𝑏𝑖, 0 ≤  𝑖 <  𝑛 (2) 

 

Let 𝑎(𝑥) and 𝑏(𝑥) be two elements in the set of polynomials 𝐺𝐹(𝑝)|𝑛. The addition 

of the polynomials results in 𝑐(𝑥). 

𝑎(𝑥) = 𝑎𝑛−1𝑥
𝑛−1 + 𝑎𝑛−2𝑥

𝑛−2 +··· +𝑎2𝑥
2 + 𝑎1𝑥 + 𝑎0, 

𝑏(𝑥) = 𝑏𝑛−1𝑥
𝑛−1 + 𝑏𝑛−2𝑥

𝑛−2 +··· +𝑏2𝑥
2 + 𝑏1𝑥 + 𝑏0, 

𝑐(𝑥) = (𝑎𝑛−1 + 𝑏𝑛−1)𝑥
𝑛−1 + (𝑎𝑛−2 + 𝑏𝑛−2)𝑥

𝑛−2 +··· 

+(𝑎2 + 𝑏2)𝑥
2 + (𝑎1 + 𝑏1)𝑥 + (𝑎0 + 𝑏0), 

The result is another element in the set, since the maximum power of 𝑥 in 

𝑐(𝑥) is the maximum power in 𝑎(𝑥) and 𝑏(𝑥), so the operation satisfies the 

property of being closed (3). 

∀ 𝑎(𝑥), 𝑏(𝑥)  ∈  𝐺𝐹(𝑝)|𝑛 ∶  𝑎(𝑥)  +  𝑏(𝑥)  ∈  𝐺𝐹(𝑝)|𝑛 (3) 

 

Example 2.3. Let bytes 10011011 and 01101001 be represented as polynomials 

in set 𝐺𝐹(2)|8. The addition of these elements is performed as follows: 
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(𝑥7 + 𝑥4+𝑥3 + 𝑥 + 1) + (𝑥6 + 𝑥5+𝑥3 + 1

=  𝑥7 + 𝑥6 + 𝑥5 + 𝑥4+(1 + 1)𝑥3 + 𝑥 + (1 + 1)

=  𝑥7 + 𝑥6 + 𝑥5 + 𝑥4 + 𝑥 

Since the elements in field 𝐺𝐹(2) are 0 and 1 the addition of 1 and 1 equals 

0. This operation can be implemented with a bitwise XOR of the coefficients of 

the polynomials stored as bits. 

There must be a neutral element (4) denoted by 𝟎 for the addition operation in 

structure (𝐺𝐹(𝑝)|𝑛, +). 

∃ 0 ∈  𝐺𝐹(𝑝)|𝑛, ∀ 𝑎(𝑥)  ∈  𝐺𝐹(𝑝)|𝑛 ∶  𝑎(𝑥)  +  0 =  𝑎(𝑥) (4) 

 

The neutral element 𝟎 for the addition operation is defined as the polynomial with 

all coefficients equal to 0. 

𝑐(𝑥) =  𝑎(𝑥) +  0 ⇔ 𝑐𝑖  =  𝑎𝑖, 0 ≤  𝑖 <  𝑛 (5) 

 

Let 𝑎(𝑥) be an element in the set of polynomials 𝐺𝐹(𝑝)|𝑛 and 𝟎 the neutral 

element for the addition operation. 

𝑎(𝑥) = 𝑎𝑛−1𝑥
𝑛−1 + 𝑎𝑛−2𝑥

𝑛−2 +··· +𝑎2𝑥
2 + 𝑎1𝑥 + 𝑎0, 

0 = (0)𝑥𝑛−1 + (0)𝑥𝑛−2 +··· +(0)𝑥2 + (0)𝑥 + (0), 

𝑐(𝑥) = (𝑎𝑛−1 + 0)𝑥𝑛−1 + (𝑎𝑛−2 + 0)𝑥𝑛−2 +··· +(𝑎2 + 0)𝑥2 + (𝑎1 + 0)𝑥 + (𝑎0 + 0)

= 𝑎𝑛−1𝑥
𝑛−1 + 𝑎𝑛−2𝑥

𝑛−2 +··· +𝑎2𝑥
2 + 𝑎1𝑥 + 𝑎0 

There must be an inverse element for every element (6), except for the neutral 

element, for the addition operation in structure (𝐺𝐹(𝑝)|𝑛, +). 

∀ 𝑎(𝑥)  ∈  𝐺𝐹(𝑝)|𝑛, ∃ 𝑏(𝑥)  ∈  𝐺𝐹(𝑝)|𝑛 ∶  𝑎(𝑥)  +  𝑏(𝑥)  =  0. (6) 
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The inverse element for the addition operation is obtained replacing each 

coefficient by its inverse element in 𝐺𝐹(𝑝). 

0 =  𝑎(𝑥) +  𝑏(𝑥) ⇔  0 =  𝑎𝑖 + 𝑏𝑖, 0 ≤  𝑖 <  𝑛 (7) 

In this way, the inverse element for each coefficient can be defined by itself. 

 

𝑎𝑖 = 𝑏𝑖, 0 ≤  𝑖 <  𝑛 

Example 2.4. Let byte 𝐶3 be represented as element 𝑎(𝑥) in set 𝐺𝐹(2)|8. 

Therefore, the inverse element 𝑏(𝑥) for the addition operation corresponds to 𝐶3. 

𝑎(𝑥) = 𝑥7 + 𝑥6 + 𝑥 + 1, 

𝑏(𝑥) = 𝑥7 + 𝑥6 + 𝑥 + 1, 

𝑎(𝑥) + 𝑏(𝑥) = (𝑥7 + 𝑥6 + 𝑥 + 1) + (𝑥7 + 𝑥6 + 𝑥 + 1)

= (1 + 1)𝑥7 + (1 + 1)𝑥6 + (1 + 1)𝑥 + (1 + 1) = 0 

Under the definition of operation (+) for structure (𝐺𝐹(𝑝)|𝑛, +), it can be 

concluded that (+) is also associative (8) and commutative (9) on the polynomials 

in set 𝐺𝐹(𝑝)|𝑛. 

∀ 𝑎(𝑥), 𝑏(𝑥), 𝑐(𝑥)  ∈   𝐺𝐹(𝑝)|𝑛 ∶ 

(𝑎(𝑥)  +  𝑏(𝑥)) +  𝑐(𝑥)  =  𝑎(𝑥)  + (𝑏(𝑥)  +  𝑐(𝑥)) 
(8) 

∀ 𝑎(𝑥), 𝑏(𝑥)  ∈  𝐺𝐹(𝑝)|𝑛 ∶  𝑎(𝑥) + 𝑏(𝑥) = 𝑏(𝑥) + 𝑎(𝑥) (9) 

 

Example 2.5. Let byte 9𝐸 be polynomial 𝑎(𝑥), byte 𝐶𝐴 be 𝑏(𝑥) and byte 2𝐹 be 

𝑐(𝑥) contained in set 𝐺𝐹(2)|8. 
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(𝑎(𝑥)  +  𝑏(𝑥)) +  𝑐(𝑥)

= ((𝑥7 + 𝑥4 + 𝑥3 + 𝑥2 + 𝑥) + (𝑥7 + 𝑥6 + 𝑥3 + 𝑥))

+ (𝑥5 + 𝑥3 + 𝑥2 + 𝑥 + 1)

= ((1 + 1)𝑥7 + 𝑥6 + 𝑥4 + (1 + 1)𝑥3 + 𝑥2 + (1 + 1)𝑥)

+ (𝑥5 + 𝑥3 + 𝑥2 + 𝑥 + 1)

= (1 + 1)𝑥7 + 𝑥6 + 𝑥5 + 𝑥4 + (1 + 1 + 1)𝑥3 + (1 + 1)𝑥2

+ (1 + 1 + 1)𝑥 + 1

= (𝑥7 + 𝑥4 + 𝑥3 + 𝑥2 + 𝑥)

+ (𝑥7 + 𝑥6 + 𝑥5 + (1 + 1)𝑥3 + 𝑥2 + (1 + 1)𝑥 + 1) =

=  𝑎(𝑥)  + (𝑏(𝑥)  +  𝑐(𝑥)) 

𝑎(𝑥) + 𝑏(𝑥) = (𝑥7 + 𝑥4 + 𝑥3 + 𝑥2 + 𝑥) + (𝑥7 + 𝑥6 + 𝑥3 + 𝑥)

= (1 + 1)𝑥7 + 𝑥6 + 𝑥4 + (1 + 1)𝑥3 + 𝑥2 + (1 + 1)𝑥

= (𝑥7 + 𝑥6 + 𝑥3 + 𝑥) + (𝑥7 + 𝑥4 + 𝑥3 + 𝑥2 + 𝑥) = 𝑏(𝑥) + 𝑎(𝑥) 

After the properties demonstrated for operation (+), structure (𝐺𝐹(𝑝)|𝑛, +) 

qualifies as an Abelian group. 

2.3.2 (𝑮𝑭(𝒑)|𝒏, +,∙) becoming a Commutative Ring 

Operation (∙) is defined as multiplication of polynomials and must be associative 

(10), commutative (11) and be related to operation (+) by the law of distributive 

(12). 

∀ 𝑎(𝑥), 𝑏(𝑥), 𝑐(𝑥)  ∈  𝐺𝐹(𝑝)|𝑛 ∶ 

(𝑎(𝑥)  ∙  𝑏(𝑥)) ∙  𝑐(𝑥)  =  𝑎(𝑥)  ∙  (𝑏(𝑥)  ∙  𝑐(𝑥)) 
(10) 

∀ 𝑎(𝑥), 𝑏(𝑥)  ∈  𝐺𝐹(𝑝)|𝑛 ∶  𝑎(𝑥) ∙ 𝑏(𝑥) = 𝑏(𝑥) ∙ 𝑎(𝑥) (11) 

∀ 𝑎(𝑥), 𝑏(𝑥), 𝑐(𝑥)  ∈  𝐺𝐹(𝑝)|𝑛 ∶  (𝑎(𝑥)  +  𝑏(𝑥))  ·  𝑐(𝑥)  

=  (𝑎(𝑥)  ·  𝑐(𝑥))  + (𝑏(𝑥)  ·  𝑐(𝑥)) 
(12) 

 

The neutral element for multiplication of polynomials is the polynomial of degree 

0 with coefficient 1 for 𝑥0.  
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∃ 1 ∈  𝐺𝐹(𝑝)|𝑛, ∀ 𝑎(𝑥)  ∈  𝐺𝐹(𝑝)|𝑛 ∶  𝑎(𝑥) ∙ 1 =  𝑎(𝑥) (13) 

 

A polynomial in set 𝐺𝐹(𝑝)|𝑛 is obtained as the result of multiplication of 

elements in the set, using a reduction polynomial 𝑚(𝑥) of degree 𝑙 = 𝑛. 

Consequently, operation (∙) is considered closed (14) on the elements in 𝐺𝐹(𝑝)|𝑛 

and the result is then defined as the algebraic product of the polynomials in set 

𝐺𝐹(𝑝)|𝑛 modulo 𝑚(𝑥). 

∀ 𝑎(𝑥), 𝑏(𝑥)  ∈  𝐺𝐹(𝑝)|𝑛 ∶  𝑎(𝑥)  ∙  𝑏(𝑥)  ∈  𝐺𝐹(𝑝)|𝑛 (14) 

𝑐(𝑥) = 𝑎(𝑥)  ∙  𝑏(𝑥) ⇔  𝑐(𝑥) ≡ 𝑎(𝑥) × 𝑏(𝑥)     (mod 𝑚(𝑥)) (15) 

 

After defining operations (+) and (∙), structure (𝐺𝐹(𝑝)|𝑛, +,∙) can be considered 

a commutative ring, since the properties of (+) and (∙) meet all the requirements. 

2.3.3 (𝑮𝑭(𝒑)|𝒏, +,∙) becoming a Finitie Field 𝑮𝑭(𝒑𝒏) 

Finally, to call structure (𝐺𝐹(𝑝)|𝑛, +,∙) a field, there must exist an inverse element 

(16) for operation (∙). 

∀𝑎(𝑥)  ∈  𝐺𝐹(𝑝)|𝑛, ∃ 𝑏(𝑥)  ∈  𝐺𝐹(𝑝)|𝑛: 𝑎(𝑥) ∙ 𝑏(𝑥) = 1 (16) 

 

Using the extended Euclidean algorithm (17) polynomials 𝑏(𝑥) and 𝑐(𝑥) 

can be obtained, as well as the greatest common divisor for 𝑎(𝑥) and 𝑚(𝑥). 

𝑎(𝑥) × 𝑏(𝑥) + 𝑚(𝑥) × 𝑐(𝑥) = 𝑔𝑐𝑑(𝑎(𝑥),𝑚(𝑥)) (17) 

 

The greatest common divisor of 𝑎(𝑥) and 𝑚(𝑥) is equal to 1, if and only if 

𝑚(𝑥) is an irreducible polynomial of degree 𝑛 over 𝐺𝐹(𝑝)|𝑛, meaning that there 

are no polynomials 𝑑(𝑥) and 𝑒(𝑥) with coefficients in 𝐺𝐹(𝑝)|𝑛 and degree > 0 



Mathematical Preliminaries 

Master Thesis - Saul García Rodríguez  10 

such that 𝑚(𝑥) = 𝑑(𝑥) + 𝑒(𝑥). (18) is obtained from the definition for operation 

(∙) in (15) and after performing modular reduction (19). 

𝑎(𝑥) × 𝑏(𝑥) + 𝑚(𝑥) × 𝑐(𝑥) = 1     (mod 𝑚(𝑥)) (18) 

𝑎(𝑥) × 𝑏(𝑥) = 1     (mod 𝑚(𝑥)) (19) 

 

With the definitions given for operations (+,∙) on elements in the set of 

polynomials 𝐺𝐹(𝑝)|𝑛, structure (𝐺𝐹(𝑝)|𝑛, +,∙) satisfies the conditions needed to 

be a field when the reduction polynomial 𝑚(𝑥) is irreducible. The field is denoted 

by 𝐺𝐹(𝑝𝑛) containing 𝑝𝑛 elements. 

2.4 𝑮𝑭(𝟐𝟖) in Rijndael 

The characteristic 𝑝 of the finite field 𝐺𝐹(𝑝𝑛) used in Rijndael is 2 with 𝑛 = 8. 

Hence, the finite field used in Rijndael is 𝐺𝐹(28), which contains 28 elements. 

The irreducible reduction polynomial 𝑚(𝑥) used in the specification of 

Rijndael [3], and, therefore, in AES [4] to define polynomial multiplication is: 

𝑚(𝑥) = 𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1 (20) 

 

Example 2.6. Let bytes 𝐷1 and 6𝐸 be elements in 𝐺𝐹(28). The product of these 

polynomials is 𝐴𝐷, which is also an element contained in 𝐺𝐹(28). 

(𝑥7 + 𝑥6 + 𝑥4 + 1) × (𝑥6 + 𝑥5 + 𝑥3 + 𝑥2 + 𝑥)

= (𝑥13 + 𝑥12 + 𝑥10 + 𝑥9 + 𝑥8) + (𝑥12 + 𝑥11 + 𝑥9 + 𝑥8 + 𝑥7)

+ (𝑥10 + 𝑥9 + 𝑥7 + 𝑥6 + 𝑥5) + (𝑥6 + 𝑥5 + 𝑥3 + 𝑥2 + 𝑥)

= (𝑥13 + (1 + 1)𝑥12 + 𝑥11 + (1 + 1)𝑥10 + (1 + 1 + 1)𝑥9 + (1 + 1)𝑥8

+ (1 + 1)𝑥7 + (1 + 1)𝑥6 + (1 + 1)𝑥5 + 𝑥3 + 𝑥2 + 𝑥)

= (𝑥13 + 𝑥11 + 𝑥9 + 𝑥3 + 𝑥2 + 𝑥) 
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(𝑥7 + 𝑥6 + 𝑥4 + 1) × (𝑥6 + 𝑥5 + 𝑥3 + 𝑥2 + 𝑥)

≡ 𝑥7 + 𝑥5 + 𝑥3 + 𝑥2 + 1     (mod 𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1) 

Modular reduction is achieved subtracting a multiple of 𝑚(𝑥), which in 

terms of an XOR is the same as the addition of a multiple of 𝑚(𝑥) to the result. 

The addition operation was previously defined as the XOR operation. After each 

reduction with a multiple of 𝑚(𝑥), the degree of the polynomial decreases. 

(𝑥13 + 𝑥11 + 𝑥9 + 𝑥3 + 𝑥2 + 𝑥) + (𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1) × (𝑥5)

= (𝑥13 + 𝑥11 + 𝑥9 + 𝑥3 + 𝑥2 + 𝑥) + (𝑥13 + 𝑥9 + 𝑥8 + 𝑥6 + 𝑥5)

= 𝑥11 + 𝑥8 + 𝑥6 + 𝑥5 + 𝑥3 + 𝑥2 + 𝑥 

(𝑥11 + 𝑥8 + 𝑥6 + 𝑥5 + 𝑥3 + 𝑥2 + 𝑥) + (𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1) × (𝑥3)

= (𝑥11 + 𝑥8 + 𝑥6 + 𝑥5 + 𝑥3 + 𝑥2 + 𝑥) + (𝑥11 + 𝑥7 + 𝑥6 + 𝑥4 + 𝑥3)

= 𝑥8 + 𝑥7 + 𝑥5 + 𝑥4 + 𝑥2 + 𝑥 

(𝑥8 + 𝑥7 + 𝑥5 + 𝑥4 + 𝑥2 + 𝑥) + (𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1) = 𝑥7 + 𝑥5 + 𝑥3 + 𝑥2 + 1 

The complete multiple of 𝑚(𝑥) can be used to reduce the polynomial in one 

operation. 

(𝑥13 + 𝑥11 + 𝑥9 + 𝑥3 + 𝑥2 + 𝑥) + (𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1) × (𝑥5 + 𝑥3 + 1)

= (𝑥13 + 𝑥11 + 𝑥9 + 𝑥3 + 𝑥2 + 𝑥)

+ (𝑥13 + 𝑥11 + 𝑥9 + 𝑥7 + 𝑥5 + 𝑥 + 1) = 𝑥7 + 𝑥5 + 𝑥3 + 𝑥2 + 1 

Finally, the product of 𝐷1 and 6𝐸 in 𝐺𝐹(28) is: 

(𝑥7 + 𝑥6 + 𝑥4 + 1) × (𝑥6 + 𝑥5 + 𝑥3 + 𝑥2 + 𝑥)

≡ 𝑥7 + 𝑥5 + 𝑥3 + 𝑥2 + 1     (mod 𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1) 

2.4.1 Multiplication by 𝒙 

The approach to reduce the product of two polynomials used for the 

implementation of Rijndael is based on the multiplication of a polynomial with 

polynomial 𝑥 modulo 𝑚(𝑥) [5]. 
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𝑎(𝑥) = 𝑏(𝑥) × 𝑥
= (𝑏7𝑥

7 + 𝑏6𝑥
6 + 𝑏5𝑥

5 + 𝑏4𝑥
4 + 𝑏3𝑥

3 + 𝑏2𝑥
2 + 𝑏1𝑥 + 𝑏0)

× 𝑥
= 𝑏7𝑥

8 + 𝑏6𝑥
7 + 𝑏5𝑥

6 + 𝑏4𝑥
5 + 𝑏3𝑥

4 + 𝑏2𝑥
3 + 𝑏1𝑥

2 + 𝑏0𝑥
≡ 𝑎7𝑥

7 + 𝑎6𝑥
6 + 𝑎5𝑥

5 + 𝑎4𝑥
4 + 𝑎3𝑥

3 + 𝑎2𝑥
2 + 𝑎1𝑥

+ 𝑎0     (mod 𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1) 

(21) 

 

The reduction polynomial 𝑚(𝑥) is used when 𝑏7 = 1. In this case, 𝑚(𝑥) is 

subtracted to the polynomial, which is the same as addition due to its 

implementation with an XOR operation. 

Multiplication by 𝑥 is the same as multiplying a byte by 2 due to the 

definitions of the finite field 𝐺𝐹(28). For this reason, multiplying polynomials by 𝑥 

is achieved at the byte level with a left shift and a conditional bitwise XOR with 

byte 𝑚(𝑥) = 1𝐵 depending on 𝑏7. 

 Since the finite field satisfies the law of distributivity for addition and 

multiplication and polynomials can be formed through the addition of polynomials 

with one coefficient different than 0 (1, 𝑥, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7), multiplication on 

bytes can be implemented with the addition of intermediate products. 

Example 2.7. Let byte 3A and byte 73 be elements in 𝐺𝐹(28). The product of the 

two polynomials is obtained using the law of distributivity adding intermediate 

products of byte 3A with polynomials with one coefficient different than 0. 

3𝐴 ⋅ 73 = 3𝐴 ⋅ (40 ⊕ 20 ⊕ 10 ⊕ 02 ⊕ 01)

= (3𝐴 ⋅ 40) ⊕ (3𝐴 ⋅ 20) ⊕ (3𝐴 ⋅ 10) ⊕ (3𝐴 ⋅ 02) ⊕ (3𝐴 ⋅ 01) 

The operations to obtain the intermediate products for byte 3𝐴 are presented in 

hexadecimal format and represented as polynomials in Table 1. 

Hexadecimal Format Polynomial Representation 

3𝐴 ⋅ 02 = 74 (𝑥5 + 𝑥4 + 𝑥3 + 𝑥) × 𝑥 = 𝑥6 + 𝑥5 + 𝑥4 + 𝑥2 
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3𝐴 ⋅ 04 = (3𝐴 ⋅ 02) ⋅ 02
= 74 ⋅ 02
= 𝐸8 

 

(𝑥5 + 𝑥4 + 𝑥3 + 𝑥) × 𝑥2

= ((𝑥5 + 𝑥4 + 𝑥3 + 𝑥) × 𝑥) × 𝑥

= (𝑥6 + 𝑥5 + 𝑥4 + 𝑥2) × 𝑥
= 𝑥7 + 𝑥6 + 𝑥5 + 𝑥3 

3𝐴 ⋅ 08 = (3𝐴 ⋅ 04) ⋅ 02
= 𝐸8 ⋅ 02 = 1𝐷0
≡ 𝐶𝐵     (mod 11𝐵) 

(𝑥5 + 𝑥4 + 𝑥3 + 𝑥) × 𝑥3

= ((𝑥5 + 𝑥4 + 𝑥3 + 𝑥) × 𝑥2) × 𝑥

= (𝑥7 + 𝑥6 + 𝑥5 + 𝑥3) × 𝑥
= 𝑥8 + 𝑥7 + 𝑥6 + 𝑥4

≡ 𝑥7 + 𝑥6 + 𝑥3 + 𝑥
+ 1     (mod 𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1) 

3𝐴 ⋅ 10 = (3𝐴 ⋅ 08) ⋅ 02
≡ 𝐶𝐵 ⋅ 02 = 196
≡ 8𝐷     (mod 11𝐵) 

(𝑥5 + 𝑥4 + 𝑥3 + 𝑥) × 𝑥4

= ((𝑥5 + 𝑥4 + 𝑥3 + 𝑥) × 𝑥3) × 𝑥

≡ (𝑥7 + 𝑥6 + 𝑥3 + 𝑥 + 1) × 𝑥
= 𝑥8 + 𝑥7 + 𝑥4 + 𝑥2 + 𝑥
≡ 𝑥7 + 𝑥3 + 𝑥2

+ 1     (mod 𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1) 

3𝐴 ⋅ 20 = (3𝐴 ⋅ 10) ⋅ 02
≡ 8𝐷 ⋅ 02 = 11𝐴
≡ 01    (mod 11𝐵) 

(𝑥5 + 𝑥4 + 𝑥3 + 𝑥) × 𝑥5

= ((𝑥5 + 𝑥4 + 𝑥3 + 𝑥) × 𝑥4) × 𝑥

≡ (𝑥7 + 𝑥3 + 𝑥2 + 1) × 𝑥
= 𝑥8 + 𝑥4 + 𝑥3 + 𝑥
≡ 1     (mod 𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1) 

3𝐴 ⋅ 40 = (3𝐴 ⋅ 20) ⋅ 02
≡ 01 ⋅ 02
= 02    (mod 11𝐵) 

(𝑥5 + 𝑥4 + 𝑥3 + 𝑥) × 𝑥6

= ((𝑥5 + 𝑥4 + 𝑥3 + 𝑥) × 𝑥5) × 𝑥

≡ 1 × 𝑥
= 𝑥     (mod 𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1) 

Table 1 - Intermediate products used for multiplication of polynomials. 

 

Using the results from Table 1 the product of polynomials 3𝐴 and 73 is obtained. 

3𝐴 ⋅ 73 = 3𝐴 ⋅ (40 ⊕ 20 ⊕ 10 ⊕ 02 ⊕ 01)

= (3𝐴 ⋅ 40) ⊕ (3𝐴 ⋅ 20) ⊕ (3𝐴 ⋅ 10) ⊕ (3𝐴 ⋅ 02) ⊕ (3𝐴 ⋅ 01)

≡ 02 ⊕ 01 ⊕ 8𝐷 ⊕ 74 ⊕ 3𝐴 = 𝐶0     (mod 11𝐵) 
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(𝑥5 + 𝑥4 + 𝑥3 + 𝑥) × (𝑥6 + 𝑥5 + 𝑥4 + 𝑥 + 1)

= ((𝑥5 + 𝑥4 + 𝑥3 + 𝑥) × 𝑥6) + ((𝑥5 + 𝑥4 + 𝑥3 + 𝑥) × 𝑥5)

+ ((𝑥5 + 𝑥4 + 𝑥3 + 𝑥) × 𝑥4) + ((𝑥5 + 𝑥4 + 𝑥3 + 𝑥) × 𝑥)

+ ((𝑥5 + 𝑥4 + 𝑥3 + 𝑥) × 1)

≡ 𝑥 + 1 + (𝑥7 + 𝑥3 + 𝑥2 + 1) + (𝑥6 + 𝑥5 + 𝑥4 + 𝑥2)

+ (𝑥5 + 𝑥4 + 𝑥3 + 𝑥) = 𝑥7 + 𝑥6     (mod 11𝐵) 

2.5 Polynomials with coefficients in 𝑮𝑭(𝟐𝟖) 

Throughout the Rijndael algorithm not only multiplication of bytes is needed, but 

also multiplication of arrays of bytes in the form: 

𝑎(𝑥) = 𝑎3𝑥
3 + 𝑎2𝑥

2 + 𝑎1𝑥 + 𝑎0, (22) 

where the coefficients are polynomials in 𝐺𝐹(28). This means, there are four 

bytes involved in polynomial 𝑎(𝑥), one four each coefficient. 

Addition is defined the same way as addition of polynomials in 𝐺𝐹(28). 

Coefficients with the same power are added by means of a bitwise XOR (23). 

Compared to addition in 𝐺𝐹(28) where the operation XOR is carried out in single 

bits, in this case, addition is performed on bytes. 

𝑎(𝑥) + 𝑏(𝑥) = (𝑎3 + 𝑏3)𝑥
3 + (𝑎2 + 𝑏2)𝑥

2 + (𝑎1 + 𝑏1)𝑥 + (𝑎0 + 𝑏0) (23) 

 

Multiplication of polynomials in this form is described in (24). However, 

since the degree of the result can be greater than the required degree, which is 

three, it is necessary to use a reduction polynomial. 
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𝑐(𝑥) = 𝑎(𝑥) × 𝑏(𝑥)
= (𝑎3𝑥

3 + 𝑎2𝑥
2 + 𝑎1𝑥 + 𝑎0) × (𝑏3𝑥

3 + 𝑏2𝑥
2 + 𝑏1𝑥 + 𝑏0)

= (𝑎3 × 𝑏3)𝑥
6 + ((𝑎3 × 𝑏2) + (𝑎2 × 𝑏3))𝑥

5

+ ((𝑎3 × 𝑏1) + (𝑎2 × 𝑏2) + (𝑎1 × 𝑏3))𝑥
4

+ ((𝑎3 × 𝑏0) + (𝑎2 × 𝑏1) + (𝑎1 × 𝑏2) + (𝑎0 × 𝑏3))𝑥
3

+ ((𝑎2 × 𝑏0) + (𝑎1 × 𝑏1) + (𝑎0 × 𝑏2))𝑥
2

+ ((𝑎1 × 𝑏0) + (𝑎0 × 𝑏1))𝑥 + (𝑎0 × 𝑏0)

= 𝑐6𝑥
6 + 𝑐5𝑥

5 + 𝑐4𝑥
4 + 𝑐3𝑥

3 + 𝑐2𝑥
2 + 𝑐1𝑥 + 𝑐0 

(24) 

 

The reduction polynomial specified for multiplication of polynomials with 

coefficients in 𝐺𝐹(28) in Rijndael [6] and AES [7] is presented in (25) and it is 

different than the one specified for multiplication in 𝐺𝐹(28) introduced in (20). 

𝑙(𝑥) = 𝑥4 + 1 (25) 

 

The result obtained from multiplication of polynomials in this form with the 

reduction polynomial 𝑙(𝑥) ensures that this modular product has a degree equal 

or less than three. 

𝑑(𝑥) = 𝑎(𝑥) × 𝑏(𝑥)
= (𝑎3𝑥

3 + 𝑎2𝑥
2 + 𝑎1𝑥 + 𝑎0) × (𝑏3𝑥

3 + 𝑏2𝑥
2 + 𝑏1𝑥 + 𝑏0)

= (𝑎3 × 𝑏3)𝑥
6 + ((𝑎3 × 𝑏2) + (𝑎2 × 𝑏3))𝑥

5

+ ((𝑎3 × 𝑏1) + (𝑎2 × 𝑏2) + (𝑎1 × 𝑏3))𝑥
4

+ ((𝑎3 × 𝑏0) + (𝑎2 × 𝑏1) + (𝑎1 × 𝑏2) + (𝑎0 × 𝑏3))𝑥
3

+ ((𝑎2 × 𝑏0) + (𝑎1 × 𝑏1) + (𝑎0 × 𝑏2))𝑥
2

+ ((𝑎1 × 𝑏0) + (𝑎0 × 𝑏1))𝑥 + (𝑎0 × 𝑏0)

≡ 𝑑3𝑥
3 + 𝑑2𝑥

2 + 𝑑1𝑥 + 𝑑0    (mod(𝑥4 + 1)) 

(26) 

 

The reduction polynomial 𝑙(𝑥) is reducible, thus, there is no inverse 

element for each element that can be represented as a polynomial with the form 

defined in (22). Consequently, to ensure invertibility polynomials used to multiply 

other polynomials must have an inverse element. 
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Due to the characteristics of the reduction polynomial 𝑙(𝑥), the polynomial 

reduction can be expressed as: 

𝐶𝑖𝑥
𝑖mod(𝑥4 + 1) = 𝐶𝑖𝑥

𝑖mod4. (27) 

 

This expression is obtained subtracting a multiple of the reduction 

polynomial 𝑙(𝑥) to the polynomial, which from the definition for addition given in 

(23) is the same as adding a multiple of 𝑙(𝑥) to the polynomial. 

𝐶𝑖𝑥
𝑖mod(𝑥4 + 1)

= 𝐶𝑖𝑥
𝑖 + 𝐶𝑖𝑥

𝑖−4(𝑥4 + 1) = 𝐶𝑖𝑥
𝑖 + 𝐶𝑖𝑥

𝑖−4+4 + 𝐶𝑖𝑥
𝑖−4

= 𝐶𝑖𝑥
𝑖 + 𝐶𝑖𝑥

𝑖 + 𝐶𝑖𝑥
𝑖−4 = 𝐶𝑖𝑥

𝑖−4 = 𝐶𝑖𝑥
𝑖mod4 

(28) 

 

The coefficients 𝑑𝑖 with 0 ≤ 𝑖 < 4 for 𝑑(𝑥) in (26) obtained after the modular 

product consists of the addition of products of polynomials in 𝐺𝐹(28). 

𝑑(𝑥) = 𝑎(𝑥) × 𝑏(𝑥)
= (𝑎3𝑥

3 + 𝑎2𝑥
2 + 𝑎1𝑥 + 𝑎0) × (𝑏3𝑥

3 + 𝑏2𝑥
2 + 𝑏1𝑥 + 𝑏0)

= (𝑎3 × 𝑏3)𝑥
6 + ((𝑎3 × 𝑏2) + (𝑎2 × 𝑏3))𝑥

5

+ ((𝑎3 × 𝑏1) + (𝑎2 × 𝑏2) + (𝑎1 × 𝑏3))𝑥
4

+ ((𝑎3 × 𝑏0) + (𝑎2 × 𝑏1) + (𝑎1 × 𝑏2) + (𝑎0 × 𝑏3))𝑥
3

+ ((𝑎2 × 𝑏0) + (𝑎1 × 𝑏1) + (𝑎0 × 𝑏2))𝑥
2

+ ((𝑎1 × 𝑏0) + (𝑎0 × 𝑏1))𝑥 + (𝑎0 × 𝑏0)

≡ ((𝑎3 × 𝑏0) + (𝑎2 × 𝑏1) + (𝑎1 × 𝑏2) + (𝑎0 × 𝑏3))𝑥
3

+ ((𝑎2 × 𝑏0) + (𝑎1 × 𝑏1) + (𝑎0 × 𝑏2) + (𝑎3 × 𝑏3))𝑥
2

+ ((𝑎1 × 𝑏0) + (𝑎0 × 𝑏1) + (𝑎3 × 𝑏2) + (𝑎2 × 𝑏3))𝑥

+ ((𝑎0 × 𝑏0) + (𝑎3 × 𝑏1) + (𝑎2 × 𝑏2) + (𝑎1 × 𝑏3))  

≡ 𝑑3𝑥
3 + 𝑑2𝑥

2 + 𝑑1𝑥 + 𝑑0    (mod(𝑥4 + 1)) 

(29) 

Therefore, 

𝑑0 = (𝑎0 × 𝑏0) + (𝑎3 × 𝑏1) + (𝑎2 × 𝑏2) + (𝑎1 × 𝑏3) 

𝑑1 = (𝑎1 × 𝑏0) + (𝑎0 × 𝑏1) + (𝑎3 × 𝑏2) + (𝑎2 × 𝑏3) 

𝑑2 = (𝑎2 × 𝑏0) + (𝑎1 × 𝑏1) + (𝑎0 × 𝑏2) + (𝑎3 × 𝑏3) 

𝑑3 = (𝑎3 × 𝑏0) + (𝑎2 × 𝑏1) + (𝑎1 × 𝑏2) + (𝑎0 × 𝑏3) 

(30) 
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The modular multiplication can be represented in the form of a matrix. 

[

𝑑0

𝑑1

𝑑2

𝑑3

] = [

𝑎0 𝑎3 𝑎2 𝑎1

𝑎1 𝑎0 𝑎3 𝑎2

𝑎2 𝑎1 𝑎0 𝑎3

𝑎3 𝑎2 𝑎1 𝑎0

] × [

𝑏0

𝑏1

𝑏2

𝑏3

] (31) 

 

Since the reduction polynomial 𝑙(𝑥) is reducible, there is no inverse 

element for polynomials that can be divided by (𝑥4 + 1), which is the irreducible 

factor of 𝑙(𝑥).   Hence, for invertibility, AES specifies a four-term polynomial 𝑎(𝑥) 

along with its inverse element 𝑎−1(𝑥) to be used throughout the algorithm, the 

coefficients are presented as bytes in hexadecimal format. 

𝑎(𝑥) = {03}𝑥3 + {01}𝑥2 + {01}𝑥 + {02} (32) 

𝑎−1 (𝑥) = {0𝐵}𝑥3 + {0𝐷}𝑥2 + {09}𝑥 + {0𝐸} (33) 

 

Verification of invertibility is achieved multiplying polynomials 𝑎(𝑥) and 𝑎−1 (𝑥). 

𝑑(𝑥) = 𝑎(𝑥) × 𝑎−1 (𝑥)
= ({03}𝑥3 + {01 }𝑥2 + {01}𝑥 + {02})
× ({0𝐵}𝑥3 + {0𝐷}𝑥2 + {09}𝑥 + {0𝐸})        

≡ 𝑑3𝑥
3 + 𝑑2𝑥

2 + 𝑑1𝑥 + 𝑑0  = 1      (mod(𝑥4 + 1)) 

(34) 

 

Represented in matrix form: 

[

𝑑0

𝑑1

𝑑2

𝑑3

] = [

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

] ⋅ [

0𝐸
09
0𝐷
0𝐵

] (35) 

 

Coefficients are thus obtained as follows: 
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𝑑0 = (02 ⋅ 0𝐸) ⊕ (03 ⋅ 09) ⊕ (01 ⋅ 0𝐷) ⊕ (01 ⋅ 0𝐵)
= 1𝐶 ⊕ 1𝐵 ⊕ 0𝐷 ⊕ 0𝐵 = 1 

𝑑1 = (01 ⋅ 0𝐸) ⊕ (02 ⋅ 09) ⊕ (03 ⋅ 0𝐷) ⊕ (01 ⋅ 0𝐵)
= 0𝐸 ⊕ 12 ⊕ 17 ⊕ 0𝐵 = 0 

𝑑2 = (01 ⋅ 0𝐸) ⊕ (01 ⋅ 09) ⊕ (02 ⋅ 0𝐷) ⊕ (03 ⋅ 0𝐵)
= 0𝐸 ⊕ 09 ⊕ 1𝐴 ⊕ 21 = 0 

𝑑3 = (03 ⋅ 0𝐸) ⊕ (01 ⋅ 09) ⊕ (01 ⋅ 0𝐷) ⊕ (02 ⋅ 0𝐵)
= 12 ⊕ 09 ⊕ 0𝐷 ⊕ 16 = 0 

(36) 

 

In conclusion, for any modular product 𝑐(𝑥) of a four-term polynomial 𝑝(𝑥) with 

polynomial 𝑎(𝑥) by using the inverse polynomial 𝑎−1(𝑥) it is possible to obtain the 

four-term polynomial 𝑝(𝑥). 

𝑐(𝑥) = 𝑎(𝑥) × 𝑝(𝑥) 

𝑝(𝑥) = 𝑎−1(𝑥) × 𝑐(𝑥) 
(37) 

 

2.6 Functions, Transformations and Permutations 

The mapping of Boolean vectors to other Boolean vectors can be described using 

Boolean functions. In this case Boolean vectors do not require to have the same 

length. 

𝑏 = 𝜙(𝑎) (38) 

 

In cryptography, Boolean vectors are often represented as blocks called 

states as is the case in the Rijndael block cipher. Boolean functions that operate 

on a state have the same length in the input as in the output and are called 

Boolean transformations [8].  

A Boolean transformation is called a Boolean permutation if it is invertible, 

in other words, if all the possible inputs are mapped one-to-one to all the possible 
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outputs [8]. An example of a Boolean permutation is changing the position of bits, 

this operation is called transposition [9]. The function can be represented as a 

permutation over the index space 𝑝(𝑖) as in (40). An example is given in Figure 

1. 

𝑏 = 𝜋(𝑎) (39) 

𝑏𝑖 = 𝑎𝑝(𝑖) (40) 

 

 

Figure 1 - Example of the Boolean permutation called transposition. 

 

In Rijndael, the 𝑛𝑏 bits in the state are grouped in 𝑛𝑡 number of tuples with 

8 bits each. A byte 𝑎𝑖 within the state is specified by its index position 𝑖 ∈ 𝛪 with 

the index space 𝛪 defined as the set {1, …𝑛𝑏}. A bit 𝑎(𝑖,𝑗) can be specified by the 

byte position within the state 𝑖 and the bit position within a byte 𝑗. 

If a subset of bits is moved without changing the position of bits within the 

subset and the subset is a byte, the operation is called byte transposition [9]. The 

index of the position of the byte can be defined as a permutation over the index 

space 𝑝(𝑖), whereas the index of the position of bits 𝑗 remains the same. 

𝑏(𝑖,𝑗) = 𝑎(𝑝(𝑖),𝑗) (41) 
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Figure 2 - Example of transposition of subsets containing 2 bits 

 

 When a function can be described as a set of Boolean functions being 

applied independently to individual subsets of a vector, this function is called a 

bricklayer function [10]. Nonlinear bricklayer functions are called S-boxes and 

linear ones D-boxes, where the letter D stands for diffusion. Analogous to the 

Boolean transformation, when a bricklayer function operates on a state it is called 

a bricklayer transformation [10]. A graphical illustration is given in Figure 3 and 

its mathematical representation in (42). The Boolean functions 𝛾𝑖 conforming the 

bricklayer transformation can be different to each other. If the transformation is 

invertible, it is called bricklayer permutation [10]. Rijndael uses a nonlinear 

bricklayer permutation (S-box) over bytes, and a linear bricklayer permutation (D-

box) over columns formed by four bytes, where all the S-boxes are defined the 

same, as well as the D-boxes. 

(𝑏(𝑖,1), 𝑏(𝑖,2), … 𝑏(𝑖,𝑚)) = 𝛾𝑖(𝑎(𝑖,1), 𝑎(𝑖,2), … 𝑎(𝑖,𝑚)) (42) 
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Figure 3 - Example of bricklayer transformation 

 

 A transformation 𝛽 that is composed by a sequence of Boolean 

transformations 𝜌 operating over a state 𝑎 iteratively is called iterative Boolean 

transformation [11]. The sequence of transformations is represented in (43), 

where 𝑟 is the number of iterations. The mathematical representation of 

intermediate states 𝑎(𝑖) obtained after each transformation 𝜌(𝑖) is shown in (44). 

A graphical example is presented in Figure 4. In order to call the transformation 

an iterated Boolean permutation the sequence of Boolean transformations must 

be Boolean permutations [11]. 

𝛽 = 𝜌(𝑟) ∘ … ∘ 𝜌(2) ∘ 𝜌(1) (43) 

𝑎(𝑖) = 𝜌(𝑖)(𝑎(𝑖−1)) (44) 

𝑏 = 𝑎(𝑚) = 𝛽(𝑑) = 𝛽(𝑎(0)) (45) 

 

Figure 4 - Example of an iterative Boolean transformation 
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2.7 Block Ciphers 

In cryptography, encryption algorithms are called block ciphers [12]. The 

block cipher applies over an 𝑛𝑏-bit state a set of Boolean permutations. Cipher 

designers focus on provide a high degree of security to avoid attacks taking 

advantage of the internal structure of the cipher, whereas providing an efficient 

implementation of the cipher on as many platforms as possible. 

A block cipher 𝐵 that consists of key-dependant Boolean permutations 

𝜌[𝑘] operating iteratively on a state as presented in (46) is called iterative block 

cipher [13]. A graphical representation shown in Figure 5. The Boolean 

permutations for this sort of cipher blocks are called round transformations [13]. 

Each of them can be defined as a sequence of more than one different Boolean 

permutations. The keys used in each round are called round keys and are 

obtained from the cipher key 𝑘 after a process of expansion. The initial key can 

be defined as the concatenation of all round keys as shown in (47). 

𝐵[𝑘] = 𝜌(𝑟)[𝑘(𝑟)] ∘ … ∘ 𝜌(1)𝑘[𝑘(1)] (46) 

𝑘 = 𝑘(𝑟)| … |𝑘(2)|𝑘(1) (47) 

 

  

Figure 5 – Example of iterative block cipher with three round transformations 
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Furthermore, if only one round transformation 𝜌 is defined and used 

iteratively in the iterative block cipher as shown in (48) the cipher is called an 

iterated block cipher [11]. 

𝐵[𝑘] = 𝜌[𝑘(𝑟)] ∘ … ∘ 𝜌[𝑘(1)] (48) 

 

The key-dependant round transformations in the iterative block cipher can 

be formed by the alternation of key-independent round transformations 𝜌(𝑟) and 

key additions 𝜎[𝑘(𝑟)] as shown in (49). If this is the case and an XOR is used for 

a simple key addition, then the iterative block cipher is called a key-alternating 

block cipher [14]. An example is given in Figure 6. 

𝐵[𝑘] = 𝜎[𝑘(𝑟)] ∘ 𝜌(𝑟) ∘ … ∘ 𝜎[𝑘(1)] ∘ 𝜌(1) ∘ 𝜎[𝑘(0)] (49) 

 

 

Figure 6 - Example of key-alternating block cipher with two rounds 

 

Moreover, if in the key-alternated block cipher the round transformations 𝜌 are 

the same, the cipher is called a key-iterated block cipher [14]. 

𝐵[𝑘] = 𝜎[𝑘(𝑟)] ∘ 𝜌 ∘ … ∘ 𝜎[𝑘(1)] ∘ 𝜌 ∘ 𝜎[𝑘(0)] (50) 
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2.8 Correlation 

A cipher can achieve resistance against linear cryptanalysis if the cipher is 

designed is such a way that there is no large correlation over rounds. Boolean 

functions 𝑓(𝑎) and 𝑔(𝑎) are correlated if their correlation 𝐶(𝑓, 𝑔) is different from 

zero [15]. 

𝐶(𝑓, 𝑔) = 2 × 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 (𝑓(𝑎) = 𝑔(𝑎)) − 1. (51) 

 

A correlation has its minimum value −1 when 𝑓(𝑎) is the complement of 𝑔(𝑎) as 

shown in (52) and its maximum value when 𝑓(𝑎) = 𝑔(𝑎) as shown in (53). 

𝐶(𝑓, 𝑔) = 2 × 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 (−𝑔(𝑎) = 𝑔(𝑎)) − 1 = −1 (52) 

𝐶(𝑓, 𝑔) = 2 × 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 (𝑔(𝑎) = 𝑔(𝑎)) − 1 = 1 (53) 

 

2.9 Difference Propagation 

Let 𝑎′ be the bitwise difference from n-bit vectors 𝑎 and 𝑎∗, 𝑏 = ℎ(𝑎), 𝑏∗ = ℎ(𝑎∗) 

and 𝑏′ = 𝑏 + 𝑏∗. It can be said that the difference 𝑎′ propagates to the difference 

𝑏′ through ℎ if and only if (54) occurs [16]. 

ℎ(𝑎) + ℎ(𝑎∗) = 𝑏′ (54) 

 

The probability that (54) occurs if a pair is chosen randomly from the set of all 

pairs (𝑎, 𝑎∗) is called the difference propagation probability [16]. 

DP(ℎ)(𝑎′, 𝑏′) = 2−𝑛 ∑𝛿(𝑏′ + ℎ(𝑎 + 𝑎′) + ℎ(𝑎))

𝑎

 (55) 
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3 Security Solutions 

Plenty algorithms and methods have been developed though the years and some 

of them have gained popularity to secure data due to their ease of 

implementation, reliability, versatility in the sense that they can be implemented 

in a wide range of devices, and simplicity in the way they can easily be explained 

and understood. 

For an overview of some important security solutions this chapter explains 

the RSA cryptographic algorithm, the Secure Hash Algorithm-2 (SHA-2) and 

finally the Hash-based Message Authentication Code (HMAC). 

3.1 RSA 

The RSA is a public key encryption or encryption algorithm, meaning that a pair 

of keys are used in the process of encryption and decryption. The key used for 

encryption is called the public key, because it does not require to be confidential, 

so anyone can encrypt a plaintext using this key. The other key is a confidential 

key called private key and without it the encrypted data cannot be decrypted. 

The security of this algorithm relies on the fact that it is a trapdoor one-way 

permutation, which are functions with special properties [17]. Permutations are 

addressed in Section 2.6. Permutations of this kind can be computed efficiently 

only in one direction. In the RSA, this means that a plaintext can be efficiently 

encrypted. However, to invert the permutation and obtain the pre-processed 

value, the so-called trapdoor information is necessary. In the RSA, the trapdoor 

information is the private key, which is required for decryption. Without the private 



Security Solutions 

Master Thesis - Saul García Rodríguez  26 

key, obtaining the decrypted data results in great effort and resources. The 

mathematical explanation behind this algorithm is described below. 

For encryption the modulus 𝑛 and the public exponent 𝑒 are required. To 

obtain 𝑛 first two chosen prime numbers 𝑝 and 𝑞 are multiplied. After that, 𝜑(𝑛) 

is obtained with this numbers. 

𝑛 = 𝑝 ∗ 𝑞 

𝜑(𝑛) = (𝑝 − 1)(𝑞 − 1) 
(56) 

 

Then, 𝑒 is calculated with 𝜑(𝑛) and conditions shown in (57). 

1 < 𝑒 < 𝜑(𝑛) 

𝑔𝑐𝑑(𝑒, 𝜑(𝑛)) = 1 
(57) 

 

Finally, plaintext 𝑚 is encrypted as follows: 

ℰ𝑛,𝑒(𝑚) = 𝑚𝑒 𝑚𝑜𝑑 𝑛,   𝑚 < 𝑛. (58) 

 

Example 3.1 Let the prime numbers 𝑝 and 𝑞 be 𝑝 = 5 and 𝑞 = 13. So 𝑛 and 𝜑(𝑛) 

are obtained as follows: 

𝑛 = 5 ∗ 13 = 65 

𝜑(𝑛) = (5 − 1)(13 − 1) = 4 ∗ 12 = 48. 

 

From these values, 𝑒 is equal to 5 since: 

1 < 5 < 48 

and 
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𝑔𝑐𝑑(5,48) = 1 

 

If there is a plaintext 𝑚 equal to 7, the encrypted plaintext is: 

ℰ65,5(7) = 75 𝑚𝑜𝑑 65 = 37 

 

For decryption, 𝑑 must be found so that: 

𝑒 ∗ 𝑑 𝑚𝑜𝑑 𝜑(𝑛) = 1 

𝑔𝑐𝑑(𝑑, 𝜑(𝑛)) = 1 
(59) 

 

Finally, decryption is achieved with 𝑛 and 𝑑. 

𝒟𝑛,𝑑(𝑐) = 𝑐𝑑 𝑚𝑜𝑑 𝑛 (60) 

 

Example 3.2 To decrypting the result obtained in the previous example, 𝑑 and 

the decrypted ciphertext are obtained as follows: 

If 

5 ∗ 𝑑 𝑚𝑜𝑑 48 = 1, 

𝑑 = 29. 

Thus, 

𝒟𝑛,𝑑(37) = 3729 mod 65 = 7 
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To decrypt a cipher text only with the private key, 𝑑 would need to be found. 

Since 𝑒 is known from the public key, 𝜑(𝑛) is the only value required and it can 

be obtained with the two prime factors of 𝑛, which is also known from the public 

key. In conclusion, the only values that need to be found are the two prime factors 

of 𝑛, that are 𝑝 and 𝑞. In Examples 3.1 and 3.2, the modulus 𝑛 is a 2-digit value, 

however, NIST suggests a modulus 𝑛 with length of minimum 2048 bits [18]. 

Consequently, the high number of computational resources to factor the product 

of two large primer numbers provides high security to the algorithm. 

3.2 Cryptographic Hash Functions 

Integrity of sensitive data must be secured preventing its modification including 

insertion or deletion of information. It is assumed that a hash function ℎ is public 

and it must be a one-way function, in other words, it must be computationally 

infeasible to find 𝑀 given the output of ℎ(𝑀). The input of a hash function is a 

variable-length message, whereas the output is a fixed-length value. 

In this first method, message 𝑀 is hashed to obtain ℎ(𝑀), both are 

encrypted and transferred. The receiver decrypts the ciphertext, hashes the 

message and authenticates it by hashing it and comparing the result with the 

hashed message sent. This method adds a layer to security, since if the key is 

compromised and the message is modified the adversary must also hash the 

message to succeed. A graphical illustration of this method is given in Figure 7. 

 

Figure 7 - Message and Hash Code both encrypted. 
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 For some applications that required authentication of large amount of data, 

encryption of such data might imply higher resource costs. In this case, if the 

message does not require confidentiality, only the hashed message can be 

encrypted not only reducing time for encryption and decryption, but also reducing 

implementation costs. A graphical illustration of this method is given in Figure 8. 

 

Figure 8 - Encryption of hashed message only 

 

 Another method, if confidentiality is not necessary and encryption requires 

to be avoided, is the addition of a secret value 𝑆 to the message before this is 

hashed, hence, this value must be confidential. The receiver authenticates the 

message adding to it the secret value, hashing both values, and comparing the 

result with the received hashed value as presented in Figure 9. 

 

Figure 9 - Hashing message with secret value 

 

 If the application requires case confidentiality, symmetric encryption can 

be implemented to the previous method before the transmission of data. If this is 
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the case, the same key is used by the receiver to decrypt the data. The key must 

remain confidential. However, if the key is compromised the message still can be 

authenticated if the secret value remains confidential. A graphical illustration is 

provided in Figure 10. 

 

Figure 10 - Confidentiality with encryption and authentication with secret value 

 

 The hash functions can also be used to authenticate the message, as well 

as the source using a technique called digital signature. This technique is 

achieved by means of asymmetric encryption where a public and a private key 

are employed. This method encrypts the hashed message with the private key 

and anyone with the public key can decrypt the message and authenticate it. A 

graphical illustration is presented in Figure 11. 

 

Figure 11 - Hash function with digital signature 

 

Confidentiality can be added to the previous method if symmetric encryption is 

performed as shown in Figure 12. 
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Figure 12 - Hashed function with digital signature and confidentiality 

 

3.3 SHA-512 

The Secure Hash Algorithm-512 (SHA-512) is a hash function member of the 

SHA-2 family which includes five more hash functions SHA-224, SHA-256, SHA-

384, SHA-512/224, and SHA-512/256. The numbers in the name of the functions 

correspond to their output lengths, while the input length is a variable length 

message. 

The first step in the hash function SHA-512 is the preparation of the data to obtain 

1024-bit blocks from the message. If required, a defined padding is used as 

shown in Figure 13. 

 

Figure 13 - Message padding for SHA-512 

 

If the last block has length 𝑙 different than 1024 bits, a padding value 𝑝 must be 

found such that 
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(𝑙 + 𝑝) mod 1024 = 896. (61) 

 

With value 𝑝 it is possible to fill the block with the initial value followed by a 1, 𝑝 −

1 zeros and the hexadecimal value of the initial length 𝑙 filling the 128 remaining 

bits. 

Example 3.3 Let the last block has the data “𝑎𝑏𝑐”, which in hexadecimal 

representation is 616263. The data has a length 𝑙 of 24 bits, which in hexadecimal 

representation is 18. To meet equation (61), 𝑝 must be equal to 872. Therefore, 

the final block is represented in binary as: 

616263𝟖000000000 0000000000000000 0000000000000000 0000000000000000 
0000000000000000 0000000000000000 0000000000000000 0000000000000000 

0000000000000000 0000000000000000 0000000000000000 0000000000000000 
0000000000000000 0000000000000000 0000000000000000 00000000000000𝟏𝟖 

 

Once the 1024-bit blocks are prepared, an initialization vector 𝐼𝑉 is 

required by the algorithm to be considered vector 𝐻0. The algorithm structure is 

based on recursive calculations, where the output of each recursion is a new 

vector 𝐻𝑛. In every recursion, function 𝑓 requires vector 𝐻𝑛 and one of the blocks 

from the message. After computing function 𝑓, its output is added by means of 

an XOR to vector 𝐻𝑛. The last recursion on the last block leads to the last vector 

𝐻𝑁. A graphical illustration of the SHA-512 is given in Figure 14. 
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Figure 14 - SHA-512 Architecture 

 

Function 𝑓 is defined as a recursive application of specific operations. The 

same operations are performed 80 times. First, 80 64-bit words are required, one 

for each round. The first 16 words are mapped by the block data 𝑀𝑛 as 

demonstrated in Figure 15. 

 

Figure 15 – Message expansion for scheduling of SHA-512 

 

The new words are generated with (62), using (63) and (64). The 

differences between the modular addition (+) and the bitwise XOR (⊕) must be 

taken into consideration for the definition of the operations. The exponent 𝑤 in 

the module is specified by the word length. 

𝑊𝑖 = 𝜎1(𝑊𝑖−2) + 𝑊𝑖−7 + 𝜎0(𝑊𝑖−15) + 𝑊𝑖−16 mod 2𝑤, 

16 ≤ 𝑖 ≤ 79 
(62) 
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𝜎0(𝑥) = 𝑅𝑂𝑇𝑅1(𝑥) ⊕ 𝑅𝑂𝑇𝑅8(𝑥) ⊕ 𝑆𝐻𝑅7(𝑥) (63) 

𝜎1(𝑥) = 𝑅𝑂𝑇𝑅19(𝑥) ⊕ 𝑅𝑂𝑇𝑅61(𝑥) ⊕ 𝑆𝐻𝑅6(𝑥) (64) 

 

Considering that 𝐻𝑛 has a length of 512 bits, it can be decomposed into 8 64-

bit elements 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺 and 𝐻. These elements are recalculated in each of 

the 80 rounds of 𝑓 for 0 ≤ 𝑖 ≤ 79 as follows: 

• 𝐻 ← 𝐺 

• 𝐺 ← 𝐹 

• 𝐹 ← 𝐸 

• 𝐸 ← 𝐷 + 𝑇1 𝑚𝑜𝑑 2𝑤 

• 𝐷 ← 𝐶 

• 𝐶 ← 𝐵 

• 𝐵 ← 𝐴 

• 𝐴 ← 𝑇1 + 𝑇2 𝑚𝑜𝑑 2𝑤 

 

Values 𝑇1 and 𝑇2 are obtained with the following equations. 

𝑇1 ← 𝐻 + ∑ (𝐸)
1

+ 𝑓𝑖𝑓(𝐸, 𝐹, 𝐺) + 𝐾𝑖 + 𝑊𝑖 mod 264 (65) 

𝑇2 ← ∑ (𝐴)
0

+ 𝑓𝑚𝑎𝑗(𝐴, 𝐵, 𝐶) mod 264 (66) 

∑ (𝐸)
1

= 𝑅𝑂𝑇𝑅14(𝐸) ⊕ 𝑅𝑂𝑇𝑅18(𝐸) ⊕ 𝑅𝑂𝑇𝑅41(𝐸) (67) 

∑ (𝐴)
0

= 𝑅𝑂𝑇𝑅28(𝐴) ⊕ 𝑅𝑂𝑇𝑅34(𝐴) ⊕ 𝑅𝑂𝑇𝑅39(𝐴) (68) 
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𝑓𝑖𝑓(𝐸, 𝐹, 𝐺) = (𝐸 AND 𝐹) ⊕ (NOT 𝐸 AND 𝐺) (69) 

𝑓𝑚𝑎𝑗(𝐴, 𝐵, 𝐶) = (𝐴 AND 𝐵) ⊕ (𝐴 AND 𝐶) ⊕ (𝐵 AND 𝐶) (70) 

The round constants 𝐾𝑖 for SHA-512 can be obtained from the following numbers 

as stated by NIST [19]. 

 

428a2f98d728ae22 7137449123ef65cd b5c0fbcfec4d3b2f e9b5dba58189dbbc 
3956c25bf348b538 59f111f1b605d019 923f82a4af194f9b ab1c5ed5da6d8118 
d807aa98a3030242 12835b0145706fbe 243185be4ee4b28 550c7dc3d5ffb4e2        
72be5d74f27b896f 80deb1fe3b1696b1 9bdc06a725c7123 c19bf174cf692694 
e49b69c19ef14ad2 efbe4786384f25e3 0fc19dc68b8cd5b5 240ca1cc77ac9c65 
2de92c6f592b0275 4a7484aa6ea6e483 5cb0a9dcbd41fbd4 76f988da831153b5 
983e5152ee66dfab a831c66d2db43210 b00327c898fb213 bf597fc7beef0ee4 
c6e00bf33da88fc2 d5a79147930aa725 06ca6351e003826f 142929670a0e6e70 
27b70a8546d22ffc 2e1b21385c26c926 4d2c6dfc5ac42aed 53380d139d95b3df 
650a73548baf63de 766a0abb3c77b2a8 81c2c92e47edaee6 92722c851482353b 
a2bfe8a14cf10364 a81a664bbc423001 c24b8b70d0f89791 c76c51a30654be30 
d192e819d6ef5218 d69906245565a910 f40e35855771202a 106aa07032bbd1b8 
19a4c116b8d2d0c8 1e376c085141ab53 2748774cdf8eeb99 34b0bcb5e19b48a8 
391c0cb3c5c95a63 4ed8aa4ae3418acb 5b9cca4f7763e37 682e6ff3d6b2b8a3 
748f82ee5defb2fc 78a5636f43172f60 84c87814a1f0ab72 8cc702081a6439ec 
90befffa23631e28 a4506cebde82bde9 bef9a3f7b2c67915 c67178f2e372532b 
ca273eceea26619c d186b8c721c0c207 eada7dd6cde0eb1 f57d4f7fee6ed178 
06f067aa72176fba 0a637dc5a2c898a6 113f9804bef90dae 1b710b35131c471b 
28db77f523047d84 32caab7b40c72493 3c9ebe0a15c9beb 431d67c49c100d4c 
4cc5d4becb3e42b6 597f299cfc657e2a 5fcb6fab3ad6faec 6c44198c4a475817 

 

3.4 HMAC 

Authentication of messages to protect integrity of data can be achieved 

implementing a message authentication code (MAC), which is also called Keyed-

Hashed Message Authentication Code (HMAC) when used with cryptographic 

hash functions [20]. 

The HMAC requires a secret key on the input to generate an authentication 

code required to verify integrity of messages and the initialization vector. This 

algorithm operates the hash function two times, one after the other. 
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First, to create the authentication code using hash function SHA-512, the 

message must be padded to reach a length of a multiple of 1024 bits. Another 

1024-bit block is concatenated to the padded message. To obtain this block, the  

value called ipad is added via a bitwise XOR with the key. Both values must have 

length of 1024 bits as well. Thus, the key is padded with zeros on the left to have 

this length and the ipad is equal to the 8-bit value 36 (represented in hexadecimal 

form) repeated 1024/8 times to have the required length. 

After that, the result of the concatenation is processed with the hash 

function using the initialization vector IV. The output of the hash function has a 

length of 512 bits and must be padded to have a length of 1024 bits. To this result 

the same process is followed with opad equal to the 8-bit value 5C (represented 

in hexadecimal form) repeated 1024/8 times to have the required length. The 

final output is a 512-bit value from the second hashed function. A graphical 

illustration is presented in Figure 16. 

 

 

Figure 16 - HMAC architecture 
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4 Xilinx FPGAs Security Solutions 

There are multiple ways in which an FPGA can be attacked [21]. To speed up 

testing of the design on the desired device security methods might be avoided 

during verification stage. If security is not addressed carefully after this stage, 

security holes might be left giving the attacker options to readback the 

configuration bitstream. The next step is to decode the bitstream from available 

formats to recover the configuration of the device. Once the bitstream has been 

extracted, substitution of sections of the bitstream is done to modify the behaviour 

of the system, this technique is known as spoofing. If the enemy wants to cause 

the system to malfunction a fault insertion can be done. Another attack is the 

side-channel attack where the adversary takes advantage of certain properties of 

the design or the device, such as, power or timing to compromise the system. 

Through the years Xilinx has dedicated effort to add generation after 

generation new security features and has released a series of documents related 

to security concerns and detailed explanation on how to implement all these 

features. 

In this chapter, Xilinx approach to protect designs for different generations 

of Xilinx FPGAs will be shown. The complexity of new features and the different 

security layouts that a designer can consider with modern FPGAs will become 

visible. Also techniques used in older FPGAs are explained which shows how 

Xilinx started to address anti-tapering (AT) solutions. 

Xilinx offers two different security features for FPGAs: passive and active 

features [22] [23]. Passive features are all those features that can be 

implemented without modifying the original design. These solutions do not 

interfere with the functionality of the design and are already implemented into the 
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device or are part of the Vivado tool flow, but need to be enabled to provide the 

desired protection.  

In contrast, active security is considered by Xilinx as all those features 

available for Xilinx FPGAs where the security is part of the design. It is more time-

consuming for the designer contrary to selecting passive features, but it takes 

less time during the configuration of the device. 

Even though passive solutions offer a simple implementation, they have 

their own challenges. One example of a passive solution is the encryption of the 

bitstream, where only one key to encrypt and decrypt is needed. This feature 

would need a battery when used with a battery-backed RAM (BBRAM) and key 

management, which is the most important element to decrypt the bitstream. 

The selection of the best methods for a tampering resistant system 

depends on multiple factors. According to Peterson Ed [22] [23], the impact on 

the company if the design is tampered must be considered. Therefore, the more 

the value of the design for the company the more financial resources and effort 

should be invested to protect the design. 

The degree of complexity of the solution selected also depends on the 

skills, investment, or patience the enemy possesses. It might not be required to 

invest much on security when the attacker does not have the skills to overcome 

every security method implemented on the FPGA. However, if the adversary is a 

well-funded government or an important competing company who is willing to 

spend significant resources and time to obtain the design, the security level must 

be the highest according to the possible alternatives. 

Lastly, to make the best choice the design stage should be taken into 

consideration. Comparing several AT methods at the beginning of the project and 

defining the most suitable ones will result in a proper integration with the design. 

Additionally, the cost and time for integration will be lower contrasted to when 

these concerns are not addressed until later stages. 
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4.1 Spartan-3A/3AN/3A DSP FPGAs 

Security solutions against reverse engineering, overbuilding, cloning, and 

tampering were considered in the architecture of the low-cost Xilinx Spartan-

3A/3AN/3A DSP FPGAs. Some of the available methods to protect integrity or 

confidentiality of designs implemented in these FPGAs are explained in this 

section based on [24]. 

4.1.1 Advanced Data Manipulation 

The FPGAs mentioned posses a default unique 64-bit device identifier containing 

a 57-bit value called Device DNA. Additional bits can be added to extend the 

device DNA to be used for security techniques. These additional bits can be 

stored in the user flash memory, as well as the Stored Checked Code, which is 

the value used to compare the output of the Security Algorithm as shown in Figure 

17. 

The values stored in the flash memory and the Device DNA could be easily 

discovered, however the manipulation of this data by a Security Algorithm and a 

sorter is confidential. The sorter is part of the design data, whereas the Device 

DNA and the Security Algorithm are contained in the Spartan-3A device. The 

sorter is defined by a de-multiplexer and a decoded counter used to control the 

de-multiplexer. After the Device DNA has been extended, the sorter selects the 

data to be used as input for the Security Algorithm and the not selected data is 

dumped into the proverbial bit bucket. If the result of the Security Algorithm does 

not match the Stored Check Code, the design can completely shut off, limit some 

functionalities, operate for a specific amount of time before stop functioning or 

lock Flash memory to all zeros to prevent repeated unauthorized access 

attempts. 
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Figure 17 - Data manipulation of Device DNA[24] 

 

4.1.2 Advanced Data Manipulation on the Stored Check Code 

and Algorithm Control 

The data manipulation technique can be expanded by adding an additional output 

to the de-multiplexer, so that the attacker only sees the extended Device DNA 

being read by the FPGA. In this way, the attacker not only must reverse engineer 

the Security Algorithm but also it must find the Stored Check Code, and to do that 

first the trash bits must be reconstructed. 

 

Figure 18 - Data manipulation on Stored Check Code [24] 
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4.1.3 Adding Fourth Output to De-Multiplexer 

A more advance technique can be achieved by adding a fourth output to the de-

multiplexer to modify the security key, seed value, or the internal structure of the 

Security Algorithm which introduces a higher layer of security [24] as shown in 

Figure 19. 

 

Figure 19 - Adding fourth output to de-multiplexer. 

 

4.2 7 Series FPGAs 

Due to higher security requirements enhanced methods to provide security in 

terms of confidentiality and authentication, compared to devices mentioned in 

previous sections, can be implemented on Xilinx 7 Series FPGAs. The methods 

explained for this Series are: bitstream encryption with the Advance Encryption 

Standard (AES), bitstream authentication using the Key-Hashed Message 

Authentication Code (HMAC) with a Secure Hash Algorithm (SHA), as well as the 

traditional Device DNA. 

4.2.1 Bitstream Encryption 

Important for designers is the confidentiality of their designs, as well as preventing 

using them in unauthorized devices. For this reason, Xilinx Vivado Design Suite 

encrypts the bitstream of the design before its deployment on Xilinx 7 series 
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devices [25]. Therefore, to configure the FPGA, an on-chip decryption engine is 

required to obtain the bitstream. 

The 256-bit key required for encryption and decryption can be generated 

with the Xilinx Vivado tool or by the user, however, Xilinx recommends key 

definition by the user through random key generators. The key is either stored in 

the eFUSE or in a dedicated battery-backed RAM, which is a RAM externally 

connected to a battery. 

Consequently, encrypted designs are unable to be loaded on devices 

without the correct key or the decryption engine. The encryption algorithm used 

by Xilinx Vivado is the Advanced Encryption Standard AES-256 in cipher block 

chaining mode of operation (CBC). 

 

4.2.2 Bitstream Authentication 

Encrypting the bitstream with the AES-256 algorithm provides confidentiality to 

the designs. Moreover, adding another layer of security through authentication of 

the bitstream prevents loading a tampered or corrupted bitstream into the FPGA. 

For authentication, the SHA-256 defined in FIPS PUB-182-2 and an 

HMAC defined in FIPS PUB-198 published by NIST are employed [22]. Although 

the AES encryption key is loaded via JTAG, this is not the case for the HMAC 

key required for authentication. The key along with the configuration bitstream is 

hashed with the SHA-256. The output of the hash function called digest is added 

to the HMAC key and the configuration bitstream to be encrypted together by the 

Xilinx tool called BitGen. On the FPGA, the decryption engine decrypts the 

encrypted bitstream with the AES key stored either in the eFUSE or in the 

BBRAM to start the process of authentication as explained in Section 4.2.1. The 

HMAC key and the configuration bitstream are used by the hash function 

available on the FPGA to provide the digest. The result must be equal to the 

digest encrypted by BitGen. If both are the same, the start up commands on the 

FPGA are performed. 
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Figure 20 - Hashed message authentication operation [22] 

 

4.2.3 Device Identifier/DNA 

In the 7 series FPGAs, a Device DNA is permanently programmed by Xilinx into 

the FPGA in a similar way as devices mentioned in previous sections. This non-

volatile identifier can be employed by security techniques to provide 

authentication since its value cannot be modified [25]. The Device DNA can be 

read using it access port design primitive shown Figure 21. 

 

Figure 21 - 7 Series FPGA DNA_PORT design primitive [25] 
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4.3 UltraScale/UltraScale+ FPGA 

The UltraScale/UltraScale+ FPGA family uses modern methos to provide security 

through confidentiality and authentication of the bitstream. Authentication can be 

achieved with or without the encryption of the bitstream. If confidentiality is 

required a symmetric encryption algorithm is employed, otherwise for 

authentication only an asymmetric algorithm is used. 

4.3.1 Bitstream Confidentiality and Authentication (Symmetric) 

Rather than using an HMAC key for authentication, this method uses the AES 

algorithm with the Galois/Counter Mode (GSM) mode of operation and a 256-bit 

key. This modern algorithm achieves confidentiality and authentication at the 

same time with a universal hash function inside AES-GCM without the 

requirement of any other specific key for the hash function [23]. 

4.3.2 Bitstream Authentication (Asymmetric) 

If no confidentiality is needed, the asymmetric encryption algorithm RSA-2048 is 

used along with the hash function SHA-3 to generate a digital signature used for 

authentication [23]. Even though an encryption algorithm is employed, it is used 

for authentication purposes and not to add confidentiality. The digital signature 

does not require to store the private key in the FPGA since this key is used for 

encryption. Instead, only the public key is required for authentication on the 

FPGA. The public key is also authenticated on the device. As a result, to load the 

configuration bitstream the hashed key stored in the eFUSEs must be the same 

as the hashed public key contained in the RSA authenticated bitstream and also 

the result after using the public key to decrypt the digital signature contained in 

the RSA authenticated bitstream must be the same as the hashed configuration 

bitstream. A graphical illustration is given in Figure 22. 
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Figure 22 - Bitstream authentication using RSA for digital signature [23] 
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5 AES 

Owing to the fact that an agency of the US Department of commerce called NIST 

decided to replace the Data Encryption Standard (DES) [26] and Triple DES, in 

January 1997 a competition was announced to select a new encryption standard 

that would be called the Advances Encryption Standard (AES) [27]. After 2 rounds 

the algorithm designed by the Belgian cryptographers Joan Daemen and Vincent 

Rijmen named as “Rijndael” was selected as the winner, and it was published by 

NIST as the Federal Information Processing Standard (FIPS) Publication 197 

(FIPS 197) [1]. 

The Rijndael algorithm is considered a block cipher algorithm. A block ci-

pher is an algorithm that for any given key k specifies an encryption algorithm to 

determine the n-bit ciphertext for a given n-bit plaintext, additionally it also spec-

ifies a decryption algorithm to determine the n-bit plaintext with a specified key k 

for a given n-bit ciphertext [28]. 

Even though the Rijndael algorithm was selected to become the AES 

standard, these algorithms cannot be considered the same. In Rijndael the block 

length and the key length can be specified to any multiple of 32 bits, from 128 

bits to 256 bits [29]. However, AES reduces these specifications setting the block 

length only to 128 bits and fixing the key length to three possible values: 128, 192 

or 256 bits. Therefore, the FIPS standard defines three variants for AES: “AES-

128”, “AES-192” and “AES-256” depending on the key length [30]. 
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5.1 Architecture 

The AES algorithm can also be defined as a symmetric cryptosystem since 

encryption or decryption is computed using the same key [31]. Symmetric key is 

the term that can be given to a key used for both operations. For this reason, the 

key must be private and must be shared only by the two parties. 

The term for the input differs for each operation as presented in Figure 23. 

The input block for encryption is called the plaintext and the output the ciphertext 

block, whereas for decryption the input block is the ciphertext and the output the 

plaintext [32]. 

 

Figure 23 - AES input and output block for encryption and decryption 

 

The 128-bit input block becomes the block named state. During the 

process of encryption and decryption a specific number of iterations called round 

transformations act over the state [33]. The operations contained in the round 

transformations, called steps, process the elements of the state changing the 

block in every operation, but maintaining the state size. The state can be 

expressed as an array, in which the number of columns 𝑁𝑏 is defined by (71). 

𝑁𝑏 =
𝑏𝑙𝑜𝑐𝑘  𝑙𝑒𝑛𝑔𝑡ℎ

32
=

128

32
= 4 (71) 

 

Considering that each element in the state contains 8 bits and there must 

be four rows the length for each column is equal to 32. Therefore, the number of 

columns 𝑁𝑏 is calculated dividing the block length, which for AES is 128 bits, by 

the length of each column, which is 32 bits. Finally, although the Rijndael 
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algorithm accepts different block lengths, the total number of columns for AES is 

always four. Figure 24 shows the 128-bit state array formed by a 4-by-4 matrix, 

in which every element is composed by 8 bits. 

 

Figure 24 - 128-bit state array 

 

The same logic is applied to obtain the number of columns of the key 𝑁𝑘 

as presented (72). AES supports only 128-, 196- and 256-bit key lengths [30]. 

Consequently, the number of columns for each variant is 4, 6 and 8 respectively. 

𝑁𝑘 =
𝑘𝑒𝑦  𝑙𝑒𝑛𝑔𝑡ℎ

32
 

(72) 

The key array 𝐾[4][8] for the AES-256 variant is shown in Figure 25 and can be 

represented as a 4-by-8 matrix and each column expressed as 𝐾0, 𝐾1 …𝐾7. 

 

Figure 25 - 256-bit key array for the AES-256 variant 

 



AES 

Master Thesis - Saul García Rodríguez  49 

5.1.1 Encryption 

The algorithm structure for encryption begins with the state block, which is 

initialized with the 128-bit plaintext block as presented in Figure 26. The first step 

called AddRoundKey operates on the state using a portion of the ExpandedKey 

called RoundKey, which is obtained from an operation called KeyExpansion. This 

operation takes the initial key and through a sequence of calculations expands 

the key into 𝑁𝑟 + 1 RoundKeys, where 𝑁𝑟 is the number of rounds. The size of the 

ExpandedKey formed by the generated RoundKeys is defined by the number of 

columns in the state 𝑁𝑏 and in the key array 𝑁𝑘. 

The number of rounds 𝑁𝑟 for the Rijndael algorithm is obtained from Table 

2 depending on the number of columns in the state 𝑁𝑏 and in the key array 𝑁𝑘. 

Due to the fact that for AES 𝑁𝑏 is equal to four, 𝑁𝑟 can take the values 10 for 

AES-128, 12 for AES-192 and 14 for the AES-256 variant [34]. 

 

 

Table 2 - Number of rounds 𝑁𝑟 depending on 𝑁𝑏 (block length / 32) and 𝑁𝑘 (key length / 32) 

 

The output of the operation AddRoundKey is the input to the round 

transformation called Round. The first step in Round is SubBytes, followed by 

ShiftRows, MixColumns and again AddRoundKey, which uses the next RoundKey 

available in the ExpandedKey. Round is iterated 𝑁𝑟 − 1 times and in every 

iteration a different RoundKey is selected from the ExpandedKey to be used in the 

step AddRoundKey [35]. 
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Figure 26 – AES Encryption steps 

 

After all the iterations of round transformation Round the state obtained is 

the input for the round transformation called FinalRound, which is only performed 

once. FinalRound consists only of three operations as opposed to Round. Step 

MixColumns is not considered a step in FinalRound. The RoundKey used in this 

AddRoundKey step is the last one available in the ExpandedKey [33]. 

Finally, the encrypted data called ciphertext is the state block obtained 

after the last step in FinalRound. The size of the ciphertext block is the same as 

the plaintext block and therefore the state block. 

5.1.2 Decryption 

The decryption structure of a ciphertext block can be seen as the inverse 

operations of the encryption algorithm but in the opposite way as presented in 

Figure 27 [36]. Although the first operation for decryption is the same as for 

encryption (AddRoundKey), in decryption this operation belongs to a round 
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transformation (InvFinalRound) and the RoundKeys expressed as elements of the 

ExpandedKey are used backwards compared to the order used for encryption. 

 

Figure 27 – AES Decryption Steps 

 In spite of the fact that the plaintext can be obtained inverting the order of 

the encryption algorithm and using the inverted operations (InvSubBytes, 

InvShiftRows and InvMixColumns), it is important to mention that the order of 

steps InvSubBytes and InvShiftRows is irrelevant, so the order does not need to 

be inverted [37]. 

5.2 Key Schedule 

As explained in previous sections AddRoundKey requires a RoundKey to operate 

on the state and these RoundKeys are portions of the ExpandedKey, which is 

derived from the initial key. The process of expanding the key into a larger array 

and selecting the correct portion of the ExpandedKey to be used as RoundKey 

receives the name of key schedule [38]. 
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5.2.1 Key Expansion 

From the initial key new elements are calculated to create the ExpandedKey. The 

total number of bits can be determined by the number of times a RoundKey is 

used, in other words the number of times AddRoundKey is performed, this is 𝑁𝑟 +

1 times. Considering that the size of a RoundKey must be equal to the size of the 

state block, the number of bits in the ExpandedKey can be expressed by (73) [39]. 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑡𝑠 𝑖𝑛 𝐸𝑥𝑝𝑎𝑛𝑑𝑒𝑑𝐾𝑒𝑦 = 𝑏𝑙𝑜𝑐𝑘 𝑙𝑒𝑛𝑔𝑡ℎ × (𝑁𝑟 + 𝟏) (73) 

 

Since AES operates on blocks of 128 bits, the number of bits in the ExpandedKey 

for AES-256, in which 𝑁𝑟 is equal to 14, is shown in (74). 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑡𝑠 𝑖𝑛 𝐸𝑥𝑝𝑎𝑛𝑑𝑒𝑑𝐾𝑒𝑦 𝑓𝑜𝑟 𝐴𝐸𝑆 − 256 = 128 × (14 + 𝟏) 

                                                                                        = 1,920 𝑏𝑖𝑡𝑠 
(74) 

 

The bits in the ExpandedKey can be represented as an array denoted by 

𝑊 as presented in Figure 28, where every element 𝑤𝑖,𝑗 is composed by a byte. 

The number of rows in the array is four as it is in the state and RoundKeys. As a 

result, the number of columns can be determined by dividing the total number of 

bits by the 32 bits contained in every column 𝑊𝑗 or considering the fact that 𝑁𝑟 +

1 RoundKeys are required and each of them consisting of four columns, given the 

number of columns in the state. Thus, the size of the array can be represented 

as 𝑊[4][𝑁𝑏(𝑁𝑟 + 1)]. 

It is important to remark that column one 𝑊1 is actually the second column 

in the array and not the first one, which is 𝑊0. For this reason, the last column is 

denoted by 𝑊𝑁𝑏(𝑁𝑟+1)−1 . 
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Figure 28 - ExpandedKey array 𝑊 

 

The size of the ExpandedKey for AES-256 can be represented as 𝑊[4][60]. The 

array is shown in Figure 29. 

 

Figure 29 - ExpandedKey array 𝑊 for AES-256 

 

The columns in the ExpandedKey are obtained in four different ways depending 

on the column to be calculated: 

1. For first 𝑁𝑘 columns: {𝑊0,𝑊1, …𝑊𝑁𝑘−1} 

2. For columns multiples of 𝑁𝑘: {𝑊𝑁𝑘
,𝑊2𝑁𝑘

, …𝑊𝑁𝑏(𝑁𝑟+1)−4} 

3. For columns multiples of four that are not multiples of 𝑁𝑘, if 𝑁𝑘 > 6: 

{𝑊𝑁𝑘+4,𝑊2𝑁𝐾+4, …𝑊𝑁𝑏(𝑁𝑟+1)−8} 

4. For all the remaining columns: {𝑊𝑁𝐾+1,𝑊𝑁𝑘+2, …𝑊𝑁𝑏(𝑁𝑟+1)−1} 

The first 𝑁𝑘 columns in the ExpandedKey are simply filled with the initial key as 

presented in Figure 30. 



AES 

Master Thesis - Saul García Rodríguez  54 

 

Figure 30 - Key expansion for first 𝑁𝑘 columns 

 

A representation of the ExpandedKey in AES-256 stressing the first 𝑁𝑘 columns 

is shown in Figure 31. 

 

Figure 31 – Key expansion in AES-256 for the first 𝑁𝑘 columns 

 

Columns 𝑊𝑗, where 𝑗 is multiple of 𝑁𝑘 are obtained adding the column 𝑁𝑘 

positions earlier 𝑊𝑗−𝑁𝑘
 to the previous column 𝑊𝑗−1 after using the S-Box with a 

cyclic rotation within the column and adding to the first row a round constant RC 

depending on the specific column to be calculated and 𝑁𝑘. A visual representation 

is exhibit in Figure 32. 
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Figure 32 - Key expansion for columns 𝑊𝑗, where j is multiple of 𝑁𝑘 

 

The RC values can be selected from Table 3. 

 

Table 3 - Round Constant RC table 

 

The operation to obtain the first column multiple of 𝑁𝑘 for AES-256 can be 

exemplified by Figure 33. The set of columns obtained using this computation for 

AES-256 is represented by {𝑊8,𝑊16, …𝑊56}. 

 

Figure 33 - Key expansion for column 𝑊8 for AES-256 

 

When 𝑁𝑘 > 6 columns 𝑊𝑗, where 𝑗 is multiple of four and not multiple of 

𝑁𝑘, are obtained adding the column 𝑁𝑘 positions earlier 𝑊𝑗−𝑁𝑘
 and the previous 

column 𝑊𝑗−1 after using the S-Box as demonstrated in Figure 34. 
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Figure 34 - Key expansion for column 𝑊𝑗 when 𝑗 𝑚𝑜𝑑 𝑁𝑘 = 4 

 

The operation to obtain the first column multiple of four and not of 𝑁𝑘 for 

AES-256, where 𝑁𝑘 is equal to eight, can be exemplified by Figure 35. The set of 

columns obtained using this computation for AES-256 is represented by 

{𝑊12,𝑊20, …𝑊52}. 

 

Figure 35 - Key expansion for column 𝑊12 for AES-256 when 𝑗 𝑚𝑜𝑑 𝑁𝑘 = 4 

 

For any other columns in the ExpandedKey array the operation to follow is 

shown in Figure 36. The columns required are the column 𝑁𝑘 positions earlier 

𝑊𝑗−𝑁𝑘
 and the previous column 𝑊𝑗−1. Figure 37 shows the operation to obtain 𝑊9 

for AES-256. 
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Figure 36 - Key expansion for the rest of the columns in 𝑊 

 

 

Figure 37 - Key expansion for column 𝑊9 for AES-256 

 

5.2.2 Round Key Selection 

The ExpandedKey conformed by 𝑁𝑏(𝑁𝑟 + 1) columns must be divided into 𝑁𝑟 + 1 

columns to be used as RoundKeys in the AddRoundKey step [40]. Therefore, 

every RoundKey consists of 𝑁𝑏 columns and can be represented as a portion of 

the ExpendedKey. This is presented in (75). In (76), RoundKey 𝑖 for AES is 

presented and in (77) the first RoundKey for AES. 

𝐸𝑥𝑝𝑎𝑛𝑑𝑒𝑑𝐾𝑒𝑦[𝑖] = 𝑤[∙][𝑁𝑏𝑖] ∥  𝑤[∙][𝑁𝑏𝑖 + 1] ∥ ⋯ ∥  𝑤[∙][𝑁𝑏(𝑖 + 1) − 1], 

0 ≤ 𝑖 ≤ 𝑁𝑟 
(75) 

𝐴𝐸𝑆 𝐸𝑥𝑝𝑎𝑛𝑑𝑒𝑑𝐾𝑒𝑦[𝑖] = 𝑤[∙][4𝑖] ∥  𝑤[∙][4𝑖 + 1] ∥ ⋯ ∥  𝑤[∙][4(𝑖 + 1) − 1], 

0 ≤ 𝑖 ≤ 𝑁𝑟 
(76) 

𝐴𝐸𝑆 𝐸𝑥𝑝𝑎𝑛𝑑𝑒𝑑𝐾𝑒𝑦[0] = 𝑤[∙][0] ∥  𝑤[∙][1] ∥ 𝑤[∙][2] ∥  𝑤[∙][3] (77) 
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A graphical representation of the ExpandedKey divided into RoundKeys is shown 

in Figure 38 and in Figure 39 the RoundKeys for AES. 

 

Figure 38 - ExpandedKey divided into RoundKeys 

 

 

Figure 39 - ExpandedKey divided into RoundKeys for AES-256 

5.3 AddRoundKey 

In this operation a RoundKey selected from the ExpandedKey is added to the state 

via a bitwise XOR operation [41] as shown in Figure 40. The inverse of 

AddRoundKey is itself, for this reason, this operation is also used for decryption 

[42]. 

 

Figure 40 - AddRoundKey step 
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5.4 SubBytes 

In this step every element within the state is substituted with a new element. The 

substitution is done using the S-box SRD shown as a tabular representation in 

Table 4. The S-box maps one-to-one every possible value that a byte can have 

with a different byte. For this reason, the step is a bricklayer permutation [43]. A 

graphical representation of the SubBytes step is presented in Figure 41. 

 

 

Figure 41 - SubBytes step operating on individual bytes. 
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Table 4 - Tabular representation of Rijndael S-box 𝑆𝑅𝐷(𝑥𝑦) 

 

Detailed description and explanation of the Rijndael S-box is given in Section 

6.3.1. 

5.5 InvSubBytes 

The InvSubBytes is defined in the same manner as the SubBytes but using the 

inverse S-box SRD
−1  shown in Table 5 [43]. Figure 42 presents the substitution of 

elements through the Rijndael inverse S-box transformation. 

 y 
0 1 2 3 4 5 6 7 8 9 A B C D E F 

𝑥 

0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76 
1 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0 
2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15 
3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75 
4 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84 
5 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A AC 58 CF 
6 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8 
7 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2 
8 CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 79 
9 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB 
A E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79 
B E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08 
C BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F AB BD 8B 8A 
D 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E 
E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF 
F 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16 
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Figure 42 - InvSubBytes step operating on individual bytes. 

 

 

Table 5 - Tabular representation of Rijndael inverse S-box 𝑆𝑅𝐷
−1(𝑥𝑦) 

 

Detailed description and explanation of the Rijndael inverse S-box is given in 

Section 6.3.1. 

 𝑦 
0 1 2 3 4 5 6 7 8 9 A B C D E F 

𝑥 

0 52 09 6A D5 30 36 A5 38 BF 40 A3 9E 81 F3 D7 7B 
1 7C E3 39 82 9B 2F FF 87 34 8E 43 44 C4 DE E9 CB 
2 54 7B 94 32 A6 C2 23 3D EE 4C 95 0B 42 FA C3 4E 
3 08 2E A1 66 28 D9 24 B2 76 5B A2 49 6D 8B D1 25 
4 72 F8 F6 64 86 68 98 16 D4 A4 5C CC 5D 65 B6 92 
5 6C 70 48 50 FD ED B9 DA 5E 15 46 57 A7 8D 9D 84 
6 90 D8 AB 00 8C BC D3 0A F7 E4 58 05 B8 B3 45 06 
7 D0 2C 1E 8F CA 3F 0F 02 C1 AF BD 03 01 13 8A 6B 
8 3A 91 11 41 4F 67 DC EA 97 F2 CF CE F0 B4 E6 73 
9 96 AC 74 22 E7 AD 35 85 E2 F9 37 E8 1C 75 DF 6E 
A 47 F1 1A 71 1D 29 C5 89 6F B7 62 0E AA 18 BE 1B 
B FC 56 3E 4B C6 D2 79 20 9A DB C0 FE 78 CD 5A F4 
C 1F DD A8 33 88 07 C7 31 B1 12 10 59 27 80 EC 5F 
D 60 51 7F A9 19 B5 4A 0D 2D E5 7A 9F 93 C9 9C EF 
E A0 E0 3B 4D AE 2A F5 B0 C8 EB BB 3C 83 53 99 61 
F 17 2B 04 7E BA 77 D6 26 E1 69 14 63 55 21 0C 7D 
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5.6 ShiftRows 

The step is defined as a byte transposition over the state. The rows of the state 

are cyclically shifted to the left over specific offsets as shown in Figure 43. The 

offset for each row depends on the number of columns of the state as presented 

in Table 6. Since AES is conformed by four columns, its offsets are emphasised 

in the table. Therefore, a byte 𝑎 in row 𝑖 and column 𝑗 is moved to column 

(𝑗 − 𝐶𝑖)mod𝑁𝑏 [44]. 

𝑏𝑖,(𝑗−𝐶𝑖mod𝑁𝑏) = 𝑎𝑖,𝑗 (78) 

 

 

Figure 43 – ShiftRows operating on rows of state. 

 

 

Table 6 - Shift offsets for different block lengths 

 

A detailed explanation regarding the design of the step is provided in Section 

6.3.4. 
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5.7 InvShiftRows 

The InvShiftRows step is the inverse byte transposition defined in ShiftRows as 

shown in Figure 44. The offsets used in the transformation are the same, 

however, rows are cyclically shifted to the right compared to the ShiftRows step 

[44]. Hence, the byte position is defined as 

𝑏𝑖,(𝑗+𝐶𝑖mod𝑁𝑏) = 𝑎𝑖,𝑗. (79) 

 

 

Figure 44 - ShiftRows operating on rows of state. 

5.8 MixColumns 

This step is defined as a bricklayer permutation operating independently on 

columns of the state. The columns at the output are obtained through modular 

multiplication between a fixed polynomial represented as a matrix and the 

columns at the input as shown in Figure 45. 
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Figure 45 – MixColumn step operating on column of state. 

 

Explanation about the fixed polynomial is given in Section 2.5 and explanation 

regarding the design of the step in Section 6.3.3. 

5.9 InvMixColumns 

The InvMixColumns step operates in the same manner as the MixColumns. 

However, the fixed polynomial used in this step is the inverse polynomial of the 

one used in the MixColumns step. A graphical ilustration is presentated in Figure 

46. 

 

Figure 46 - InvMixColumn step operating on column of state. 
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6 Design of Rijndael 

This chapter provides detailed information about the path followed by Joan 

Daemen and Vincent Rijmen to design the Rijndael block cipher. Topics such as 

the selection for the cipher structure, transformations to be used, operations to 

avoid, optimal number of rounds and security goals are addressed to provide 

greater insight into the design. 

6.1 General Criterion 

The important property when it comes to ciphers has to be security. 

Designers must be aware of the weaknesses that the internal structure of the 

cipher has, to avoid attacks taking advantage of it. When these cryptanalytic 

attacks are properly addressed the workload necessary to succeed would be the 

same one as for an exhaustive search of the key [45]. 

The design had to achieve that the same amount of effort and storage was 

used for all possible attacks for most possible block ciphers. To achieve this, 

approach to security was based on two concepts: the cipher had to be K-secure 

and hermetic. A cipher is called K-secure if there are no key-recovery attacks 

faster than exhaustive search of the key and if the cipher does not have particular 

symmetry properties or weak keys, therefore, if there are no successful related-

key attacks. To make the cipher hermetic, the must be no advantages of attacking 

specific block ciphers with same block and key length [46]. This means, that the 

internal structure cannot be used against the cipher. 

Since ciphers can be employed in a wide number of industries, the 

resources for its implementation must be considered, such as energy 
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consumption, speed and area required [47]. For a software application, the 

amount of working memory and memory to store the program is relevant. 

Moreover, these considerations must be valid on wide range of processors [48]. 

Depending on the implementation requirements the key might have to be 

generated more than once, or even for every time there is a new input. This is 

the reason why the agility to generate new expanded keys is important to be 

considered [49]. 

The designer must find the balance between efficiency and security. On 

the one hand, the use of more resources can lead to a more secure cipher. On 

the other hand, focusing only on efficiency creates vulnerabilities. The cipher 

should be designed to achieve maximum efficiency with a reasonable security 

margin. 

To facilitate the implementation of Rijndael, the designers considered 

using as less operations as possible enough to satisfy the requirements above 

mentioned. These operations had to be easy to explain to avoid 

misunderstandings during implementation [50]. With this simplicity of 

specification, more people would find its implementation attractive and hence, 

after different implementations of the cipher by more people it would gain more 

credibility. 

Ciphers also gain credibility through analysis against different attacks. In 

the same way, the cipher had to attract people for its analysis from a 

mathematical approach, so its properties to provide security had to be easy to 

demonstrate and understand [50]. 

6.2 Structure Selection 

The designer’s approach to achieve simplicity was through symmetry and 

the choice of operations. Iterating the same key-dependant round transformation 

except for the last round allows decryption to have the same structure as 

encryption [51]. A risk of having high symmetry on a cipher are slide attacks, 
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which exploits the property of symmetry in its internal structure. Consequently, 

the design had to find a way to avoid high symmetry throughout all the cipher. 

The measure taken was avoiding high symmetry in the key schedule [52]. 

The element considered as the one that gives strength to the cipher is the 

element that adds nonlinearity, which is an S-box [53]. However, linear steps such 

as diffusion among other properties within ciphers provide the resistance required 

against differential and linear cryptanalysis, which is the theoretical basis to 

analyse security in iterative clock ciphers [54]. The way in which these properties 

can be added is by first selecting the proper optimization approach, which also 

defines the number of rounds needed. 

Optimization is performed on the worst-case behaviour of the cipher. The 

maximum input-output correlation defines the worst-case scenario for linear 

cryptanalysis, while for differential cryptanalysis the worst-case scenario is 

defined by the maximum differential propagation probability. Local optimization 

considers the worst-case behaviour of one round, whereas in global optimization 

a sequence of rounds is considered to determine the worst-case behaviour to 

[55]. 

A disadvantage of using local optimization is the expensive nonlinear 

functions required to improve worst-case behaviour. In Rijndael, this was 

achieved applying global optimization making use of symmetry and alignment 

properties, but more importantly a design approach called the wide trail strategy 

[55]. With this approach every component within the cipher has a concrete 

function and thus is defined with regard to nonlinearity and diffusion. In addition, 

nonlinear functions are not as costly as they are for local optimization. To simplify 

linear and differential cryptanalysis for optimization a key-alternating cipher 

structure was selected to be used for the cipher, as this structure allows analysis 

regardless of the key due to its simple addition through a bitwise XOR operation 

[56]. 
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6.3 Transformations Selection 

After selecting a key-alternating cipher structure as the structure for Rijndael the 

transformations in its rounds were chosen to combine resistance and efficiency. 

This was achieved with the design approach called the wide trail strategy, which 

defines the round as a sequence of two invertible steps [57]. 

The first transformation in the round transformation 𝜌 is a local nonlinear 

transformation 𝛾. The term local to define a transformation means that specific 

bits at the output depend only on specific bits at the input, while neighbouring bits 

at the input are only considered by neighbouring bits at the output. The second 

transformation is a linear mixing transformation that provides high diffusion [57]. 

The sequence of transformations is shown in (80) and a graphical illustration is 

given in Figure 47, where state 𝑎 consists of elements [𝑎1 𝑎2 𝑎3] with two bits 

each and after the round transformation a key addition 𝜎[𝑘] is performed. 

𝜌 = 𝜆 ∘ 𝛾 (80) 

 

 

Figure 47 - Example of a 𝛾𝜆 round structure 
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6.3.1 Local Nonlinear Transformation 𝜸 

The first transformation in the sequence of steps specified by the wide trail 

strategy is the local nonlinear transformation 𝛾. 

This transformation achieves nonlinearity using an invertible nonlinear 

substitution box called S-box. The transformation is defined as a bricklayer 

permutation that operates on induvial bytes, so it satisfies the property of being 

local. 

𝑏 = 𝛾(𝑎) ⇔ 𝑏𝑖 = 𝑆𝛾(𝑎𝑖) (81) 

 

Even though nonlinearity can be achieved using different S-boxes for each 

position byte, this approach is not required since no improvement of resistance 

against linear and differential cryptanalyst was demonstrated [57]. Moreover, it 

only increases the resource cost. Consequently, the same S-box is used for each 

byte position. 

The S-box must satisfy nonlinearity to reduce as much as possible the 

input-output correlation and difference propagation probability in order to provide 

resistance against linear and differential cryptanalysis. The substitution box must 

also provide high degree of complexity in its algebraic expression to prevent 

interpolation attacks [43]. 

From a set of already defined S-boxes that satisfy nonlinearity the S-box 

consisting of transformation Inv8 was selected. This transformation is described 

as the mapping of an element with its inverse in 𝐺𝐹(28) extended with 0 mapped 

to 0. However, it does not possess algebraic complexity. Therefore, the Rijndael 

S-box SRD was built as a sequence of transformation Inv8 and an invertible affine 

transformation Aff8. Even though the affine transformation Aff8 has no complexity 

in its algebraic expression, its combination with Inv8 provides the required 

complexity [43]. 
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SRD = Aff8 ∘ Inv8 (82) 

To define the affine transformation Aff8 first two restrictions were imposed. 

The first restriction declares no fixed points, while the second one no opposite 

fixed points. 

SRD[𝑎] + 𝑎 ≠ 0,     ∀𝑎 (83) 

SRD[𝑎] + 𝑎 ≠ 𝐹𝐹,     ∀𝑎 (84) 

 

The affine transformation is defined as the addition in 𝐺𝐹(28) of a linearized 

polynomial 𝐿(𝑎) over 𝐺𝐹(28) and a constant 𝑞. 

Aff8(𝑎) = 𝐿(𝑎) + 𝑞 (85) 

 

A matrix representation of the affine transformation and its inverse transformation 

is presented in (86) and (87) respectively. 

𝑏 = Aff8(𝑎) ⇔ 

[
 
 
 
 
 
 
 
𝑏7

𝑏6

𝑏5

𝑏4

𝑏3

𝑏2

𝑏1

𝑏0]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1]

 
 
 
 
 
 
 

×

[
 
 
 
 
 
 
 
𝑎7

𝑎6

𝑎5

𝑎4

𝑎3

𝑎2

𝑎1

𝑎0]
 
 
 
 
 
 
 

+

[
 
 
 
 
 
 
 
0
1
1
0
0
0
1
1]
 
 
 
 
 
 
 

 
(86) 

𝑥 = Aff8
−1(𝑦) ⇔ 

[
 
 
 
 
 
 
 
𝑥7

𝑥6

𝑥5

𝑥4

𝑥3

𝑥2

𝑥1

𝑥0]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
0 1 0 1 0 0 1 0
0 0 1 0 1 0 0 1
1 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0
0 0 1 0 0 1 0 1
1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1
1 0 1 0 0 1 0 0]

 
 
 
 
 
 
 

×

[
 
 
 
 
 
 
 
𝑦7

𝑦6

𝑦5

𝑦4

𝑦3

𝑦2

𝑦1

𝑦0]
 
 
 
 
 
 
 

+

[
 
 
 
 
 
 
 
0
0
0
0
0
1
0
1]
 
 
 
 
 
 
 

 
(87) 
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Since the inverse transformation of transformation Inv8 is itself, the Rijndael S-

box SRD and its inverse transformation SRD
−1  can be represented as shown in (88) 

and (89) respectively. 

SRD[𝑎] = Aff8(Inv8(𝑎)) (88) 

SRD
−1[𝑎] = Inv8

−1(Aff8
−1(𝑎)) = Inv8(Aff8

−1(𝑎)) (89) 

 

In Rijndael, the step that applies the local nonlinear transformation 𝛾 using 

the substitution box SRD over the state is called the SubBytes step is used for 

encryption. In contrast, the step that uses the inverse substitution box SRD
−1  in the 

local nonlinear transformation 𝛾 for decryption is called the InvSubBytes step. 

The application of the S-box to each byte position allows parallelism, as 

no order must be followed to substitute the bytes within the state. To facilitate 

analysis alignment during application of the transformation must be satisfied. In 

other words, bytes must contain only bits from same column and row within the 

state if the state is represented as a block. As a result of alignment, each bit is 

handled similarly compared to all other bits, thus adding symmetry to the 

transformation [58]. This imposes to the cipher the requirement that the block 

length must be multiple of the S-box, which is 8 bits [59]. 

The wide trail strategy focusses on the analysis of the weight of trails. The 

weight of trails is defined by the correlation and difference propagation over the 

round. The design approach goal is to improve the weight of trails increasing the 

minimum weight of trails. This can be achieved either using a large S-box, which 

requires higher implementation costs or designing the round avoiding the 

existence of trails with low weight [60]. 

To avoid using a larger S-box, diffusion can be added to the round 

increasing the minimum weight. However, bricklayer transformations add no 

diffusion. Therefore, neither the nonlinear transformation 𝛾 nor the key addition 
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provide diffusion to the round as they operate on individual bytes. For this reason, 

the linear mixing transformation 𝜆 is required [61]. 

6.3.2 Linear Mixing Transformation 𝝀 

Adding diffusion to the round is only possible through the linear mixing 

transformation 𝜆 increasing the branch number, which is the diffusion measure. 

Since the branch number is the same for a transformation and its inverse, it does 

not change for encryption and decryption adding symmetry to the design. 

Nevertheless, transformations with high branch number imply high 

implementation costs as well [62]. 

 Rather than defining an expensive transformation in terms of resources, 

an efficient solution was designed taking advantage of propagation properties. 

This approach consists of building transformation 𝜆 as a sequence of two 

transformations: on the one hand, a transformation 𝜃 that provides high local 

diffusion through a linear bricklayer permutation on array bytes, and on the other, 

a transformation 𝜋 that provides high dispersion by moving bytes that were closed 

to each other at the input to distant positions at the output [62]. 

6.3.3 Local Diffusion Transformation 𝜽 

This transformation is defined as a linear bricklayer permutation operating on 

columns, which are arrays of bytes. Furthermore, since it is a linear 

transformation, it can be defined using an 𝑛𝜉 by 𝑛𝜉 matrix 𝑀𝜉, where 𝑛𝜉 is the 

number of elements in the columns, which is the same as the number of rows in 

the state if this is represented as a block [63]. 

𝑏 = 𝜃(𝑎) ⇔ 𝑏𝜉 = 𝑀𝜉𝑎𝜉 (90) 

 

The columns are considered as polynomials over 𝐺𝐹(28). Hence, a fixed 

polynomial 𝑐(𝑥) used to multiply each column must be defined. The polynomial 

must have an inverse element in 𝐺𝐹(28), and its coefficients must be the simplest 
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possible to achieve high performance [64]. As explained in Section 2.5, the fixed 

polynomial 𝑐(𝑥) and its inverse is 𝑑(𝑥)  are defined as 

𝑐(𝑥) = {03}𝑥3 + {01}𝑥2 + {01}𝑥 + {02}, (91) 

𝑑(𝑥) = {0𝐵}𝑥3 + {0𝐷}𝑥2 + {09}𝑥 + {0𝐸}. (92) 

 

A matrix representation of the multiplication of a column with the fixed polynomial 

𝑐(𝑥) and its inverse 𝑑(𝑥) over 𝐺𝐹(28) is shown in (93) and (94). 

𝑏(𝑥) = 𝑐(𝑥) × 𝑎(𝑥) ⇔ 

[

𝑏0

𝑏1

𝑏2

𝑏3

] = [

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

] ⋅ [

𝑎0

𝑎1

𝑎2

𝑎3

] 
(93) 

𝑎(𝑥) = 𝑑(𝑥) × 𝑏(𝑥) ⇔ 

[

𝑎0

𝑎1

𝑎2

𝑎3

] = [

0E 0B 0D 09
09 0E 0B 0D
0D 09 0E 0B
0B 0D 09 0E

] ⋅ [

𝑏0

𝑏1

𝑏2

𝑏3

] 
(94) 

 

Therefore, since the transformation is linear, it can also be described as a 

D-box operating on individual columns. The restriction imposed to the D-box 

matrix to be circular, as shown in (95), defines the number of bytes in each 

column to four elements, which is the same as the number of rows. In addition, 

imposing alignment between bytes and columns adds symmetry to the 

transformation and restricts the length of the block length to be multiple of the 

column size, which is 4 bytes or 32 bits. The D-Box also allows parallelism in its 

operation over each column [58]. 

𝑎𝑖,𝑗 = 𝑎0,𝑗−𝑖mod4 (95) 
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In Rijndael, the step that operates on the state through this transformation 

is called the MixColumns step, which is used for encryption, whereas the step that 

uses the inverse transformation is called the InvMixColumns step, which is used 

for decryption.  

6.3.4 Dispersion Transformation 𝝅 

More diffusion can be achieved without necessarily increasing the branch number 

and thus implementation costs as well. Rather than incrementing the branch 

number, the column branch number, which is the branch number with respect to 

columns, can be increased providing inter-column diffusion, if the transformation 

does not operate in independent columns [65]. Furthermore, combining the 

branch number with the column branch number affects the weight of trails [66]. 

Consequently, the dispersion transformation 𝜋 is defined as a transposition of 

bytes in order to move the elements in each column to different columns [67]. 

𝑏 = 𝜋(𝑎) ⇔ 𝑏𝑖 = 𝑎𝑝(𝑖) (96) 

 

Since in Section 6.3.2 the number of rows was already specified as four 

by the D-box to satisfy the circular matrix restriction, the minimum number of 

columns must be equal to the number of rows to ensure all bytes within the 

column are distributed over different columns. If this occurs, it can be said that 

the transformation 𝜋 is diffusion optimal [67]. 

Thus, to make the transformation diffusion optimal different offsets were 

specified for the transposition of bytes. The criterion of simplicity was applied to 

select the different offsets for each row. For this reason, one offset is equal to 

zero. Although the offsets could be assigned arbitrarily to the rows, their simplest 

values were selected considering resistance against saturation and truncated 

differential attacks [44]. The offsets are defined in Table 7. 
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N𝑏 C0 C1 C2 C3 

4 0 1 2 3 

5 0 1 2 3 

6 0 1 2 3 

7 0 1 2 4 

8 0 1 3 4 

 

Table 7 – Offsets for different block lengths 

 

In Rijndael, this transformation is used as the ShiftRows step for 

encryption, and its inverse transformation is used as the InvShiftRows step for 

decryption. 

6.4 Round Transformation 

The round transformation 𝜌 was defined by the local nonlinear transformation 𝛾 and 

the linear mixing transformation 𝜆, which consists of the dispersion transformation 𝜋 

and the local diffusion transformation 𝜋 [68]. 

𝜌 = 𝜆 ∘ 𝛾 = 𝜃 ∘ 𝜋 ∘ 𝛾 (97) 

 

A graphical illustration of the round transformation followed by the key addition is 

given in Figure 48. 
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Figure 48 – Round transformation of Rijndael 

Applying alignment and symmetry in the transformations that form the 

circular process allows for adaptable sequencing of steps. Since the nonlinear 

step 𝛾 operates on individual bytes, it can commute with the transposition step 𝜋. 

Furthermore, the transposition and the mixing step can also commute with the 

key addition if the same transformation is applied to the key [59]. This property is 

valid for any linear transformation 𝐴 with state 𝑥 and key 𝑘 [37]. 

𝐴(𝑥 + 𝑘) = 𝐴(𝑥) + 𝑎(𝑘) (98) 

 

The XOR operation for the key addition, modular multiplication with 

constants for the MixColumns step and addition operation in 𝐺𝐹(28) were 

selected to be used by the transformations. Arithmetic operations were excluded, 

as they might not take full advantage of some processors and because 

implementation of multiplication involves larger number of gates. Additionally, 

carry propagation complicates the implementation of countermeasures against 

differential power analysis [69]. 
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6.5 Number of rounds 

If the number of cipher rounds increases, the resistance against 

cryptanalytic attacks also increases. To determine the number of rounds, first the 

number of rounds, for which shortcut attacks show more efficiency than an 

exhaustive search of the key, had to be identified. Once the minimum number of 

rounds to prevent shortcut attacks was known, four more rounds were added to 

provide a security margin. It can be said that full diffusion was added at the 

beginning and at the end of the round, since two rounds are sufficient to provide 

full diffusion. In other words, after two rounds, one state bit is likely to affect half 

of the state bits. The security margin provides resistance against linear and 

differential cryptanalysis, as well as truncated differential attacks, saturation 

attacks and the impossible-differential attack [70]. 

To minimize efficiency in shortcut attacks, for every additional column in 
the key, consisting of 32 bits, the number of rounds increases by one. 

Considering the key length in the number of rounds provides protection against 
partially known keys attacks and related-key attacks. Moreover, the number of 

rounds increases by one for every additional column in the block as well, because 
diffusion is added after three rounds for block lengths above 128 bits. In this way, 

patterns at the output with respect to the input are reduced [70].  

Table 8 shows the number of rounds the cipher must have depending on 

the number of columns in the block and the number of columns in the key. 

 𝑁𝑏 

𝑁𝑘 4 5 6 7 8 

4 10 11 12 13 14 

5 11 11 12 13 14 

6 12 12 12 13 14 

7 13 13 13 13 14 

8 14 14 14 14 14 
 

Table 8 - Number of rounds 𝑁𝑟 depending on 𝑁𝑏 (𝑏𝑙𝑜𝑐𝑘 𝑙𝑒𝑛𝑔𝑡ℎ/32)  and 𝑁𝑘  (𝑘𝑒𝑦 𝑙𝑒𝑛𝑔𝑡ℎ/32) 
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6.6 Key Schedule 

The key schedule is formulated to introduce asymmetry into the cipher via round 

constants, nonlinearity through the use of the S-box, and efficient diffusion during 

key expansion. This approach protects the cipher against slide attacks and 

provides resistance against related-key attacks [71]. 

The resources utilized and the simplicity of its operations during the key 

expansion were designed to minimize costs in implementation and thus provide 

high key agility, which is related to time, power, and memory costs [72]. 

The expansion of the key enables independence from the block length as 

its design relies on the key length, which is mapped to the expanded key during 

the initial stage of key expansion. In contrast, the round key selection step 

depends on the columns of the state, since it selects the same number of bits 

from the expanded key. However, it does not depend to the key length [73]. 

Thanks to the key expansion's design approach, round keys can be 

generated on-the-fly. This means they are generated individually as needed 

instead of all at once before using the first key. This approach can be used for 

both encryption and decryption. As a consequence, only memory with size of the 

key is needed to expand the key [74]. 
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7 Conventional AES-256 

Implementation 

In this chapter the characteristics of a conventional implementation of the 

Advance Encryption Standard – 256 are explained, such as the application of the 

steps, instances used, and scheduling for the encryption and decryption. This 

approach also applies for the implementation of the other variants, these are 

AES-128 and AES-192. 

7.1 Application of steps 

The conventional sequence of steps for encryption as well as for decryption 

begins with the expansion of the cipher key. First, the cipher key is mapped to 

the array of the expanded key and the following columns are obtained with 

operations on previous columns. The conventional approach proposes 

expanding the full key before the first RoundKey is added in the AddRoundKey 

step, which is the first step in both the encryption and decryption process. 

Once the ExpandedKey is complete, stored, and ready to use the 

AddRoundKey step operates over the state. In encryption, the AddRoundKey step 

is not considered in the Round transformation in comparison with decryption, 

where it is a step within the InvRound transformation as explained in Section 5.1. 

Due to the cipher design approach, the property of symmetry allows 

parallelism in the application of each step over the elements within the state as 

explained in Section 6.3. In other words, all the element in the state can be 

processed at the same time if the required resources exist. 
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7.2 Resource Utilization 

To apply the transformations in each step over all the elements of the state at 

once as the conventional implementation proposes, first the analysis of resources 

must be determined. 

The steps of interest are the steps using an S-box, D-box and their inverse, 

The steps using these transformations are the SubBytes, InvSubBytes, 

MixColumns and InvMixColumns step, as well as for the KeyExpansion. Since all 

the steps excluding the KeyExpansion are defined as bricklayer permutations, the 

transformations operate independently over elements of the state. The S-Box 

operates independently over bytes, whereas the D-Box over its columns. 

If a bricklayer permutation requires the complete state to be computed at 

once, the number of transformations necessary to operate over the state is equal 

to the number of elements within the state. For the SubBytes step, the number of 

S-box instances required to compute all the bytes at the same time is equal to 

the number of bytes within the state, which is 16 bytes as shown in Figure 49. In 

contrast, the number of D-box instances required to compute all the columns at 

the same time for the MixColumns step is equal to the number of columns within 

the state, which is 4 as presenented in Figure 50. 

If different S-box instances are used for the KeyExpansion, the number of 

S-box instances increases by 8 for AES-256. Consequently, the total number of 

S-box instances for AES-256 is equal to 24 instances. 
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Figure 49 – S-box instances for the SubBytes step 
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Figure 50 - D-box instances for the MixColumns step 

7.3 Scheduling 

The KeyExpansion for AES-256 is computed iteratively for every 8 columns after 

the cipher key has been mapped to the first 8 columns of the ExpandedKey. The 

same operations are employed using 8 S-box instances for every iteration. Since 

7 iterations are required, the KeyExpansion takes 8 cycles to be computed 

considering the mapping of the cipher key. After the KeyExpansion, the encryption 

or decryption steps can be performed. 

The total number of cycles can be calculated taking into account the following 

considerations: 

1. The Round and InvRound transformations consist of four steps and are 

iterated 13 times. 

2. The FinalRound and InvFinalRound are conformed by three steps and are 

computed once. 

3. An additional AddRoundKey step operates on the state at the beginning 

and at the end in encryption and decryption respectively.  
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4. Each step takes one cycle. 

Excluding KeyExpansion the cipher takes 56 cycles for encryption or 

decryption. Accordingly, the total number of cycles is obtained adding the number 

of cycles taken by the KeyExpansion and by the steps for encryption or decryption. 

In conclusion, the total number of cycles is equal to 64 cycles. 
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Encryption and decryption scheduling is shown in  

 

Table 9 and  
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Table 10 respectively. 
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Table 9 - Scheduling of conventional implementation of AES-256 for encryption 
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Table 10 - Scheduling of conventional implementation of AES-256 for decryption 
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8 State-of-the-art 

Analysis and approaches fin the implementation of the Advanced Encryption 

Standard (AES) has been an interesting topic of study not only in the 

cryptography field, but also in many industries that require security embedded in 

hardware. 

 

8.1 AES Architecture for Secure ECG Signal 

Transmission 

AES implementations on FPGAs has been used in the medical field, such 

as work [75], that implements AES-128 for encryption and decryption on a Xilinx 

ZedBoard Zynq™−7000 FPGA to secure Electrocardiogram signals. ECG 

signals are considered a biometric identification since two persons cannot emit 

the same ECG signals. Consequently, malicious intentional manipulation of this 

signals might lead to damage to the user´s integrity. Additionally, by law it is 

required to transfer the ECG signals encrypted [76]. 

Rather than implementing all the rounds in a fully pipelined fashion, a 

folded architecture was implemented, where only one set of operations was 

reused reducing area. A graphical illustration is presented in Figure 51. 
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Figure 51 - Modified Architecture of Round Module of AES [75] 

 

8.2 Implementation and Comparative Analysis of 

AES 

 The work described in [77] implements AES-128 on a Xilinx FPGA Artix-7. 

The implementation approach in this work is the conventional one with no further 

modifications. Additionally, it is presented a comparative analysis of its 

implementation with other works. 

 

8.3 AES implementation on Xilinx FPGAs suitable 

for FPGA based WBSNs 

 Confidentiality in individual´s physiological data was also addressed in 

work [78] with the implementation of AES-128 on the Xilinx Artix-7 Virtex-7, 

Virtex-6, Virtex-4 and Spartan-6 FPGAs for wireless body sensor networks 

(WBSN). The approach taken in this work was the utilization of the dedicated 

Block RAM resources provided by the FPGAs for the S-box look up table. This 

approach results in a higher efficiency on the Artix-7 FPGA in terms of speed, 

area, and power compared to the other devices. The architecture followed for this 

implementation is given in Figure 52. 
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Figure 52  - Architecture for AES implementation using Block RAMS  [78] 

  

8.4 Efficient AES Implementation Using Xilinx 

System Generator 

 Reducing time costs during implementation of AES was addressed in [79] 

using High Level Language (HLL) through Xilinx System Generator for MATLAB, 

which provides flexibility in design. However, with this approach the low-level 



State-of-the-art 

Master Thesis - Saul García Rodríguez  92 

design is ignored. For implementation of the S-box for the SubBytes step, BRAM 

resources were used. The design was implemented on a Xilinx Virtex-6 FPGA. 

The architecture followed by this work is a full-pipelined architecture as shown in 

Figure 53. Hardware resources were not reused during encryption, so 10 rounds 

were implemented. 

 

 

Figure 53 - Pipelined architecture [79] 

  

8.5 High Performance Data Encryption with AES 

Big Data encryption also represents a topic of interest in implementations 

of AES as demonstrated in [80]. In this work, speed is the main concern since 

large amount of data needs to be encrypted. To achieve high throughput, a deep 

pipeline and full expansion technology was implemented on the Xilinx 

xc7k325tffg676-2l chip. In the same way as in previous work [79], this work uses 

independent hardware for each round as shown in Figure 54. Additionally, a 

complete unroll design was proposed, implementing 16 S-boxes for each round 

to prevent access congestion, 16 registers for the intermediate states, and 16 

registers for each round key used as shown in Figure 55. This approach 
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increases the resources used, but most importantly increases the number of bits 

processed in every cycle. 

 

Figure 54 – Deep-pipelined architecture of AES [80] 

 

 

 

Figure 55 – Complete unroll design [80] 
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8.6 High Throughput and Fully Pipelined 

Implementation of AES-192 

 A similar approach was implemented in [81] in which loop-unrolling, fully 

pipelining, and sub-pipelining techniques were implemented to achieve high 

throughput. The loop-unrolling technique was employed to prevent a loop 

implementation that reuses the same hardware for all rounds. This approach 

results in a full-pipelined architecture. A graphical illustration of this approach is 

given in Figure 56. Moreover, in every round the steps are implemented in a sub-

pipelined fashion as shown in Figure 57. The design was implemented on a Xilinx 

Virtex-7 Defense-Grade FPGA. 

 

 

Figure 56 - Fully-pipelined architecture for AES-192 with loop-unrolled technique [81] 

 

 

Figure 57 - Sub-pipelined architecture for round [81] 
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8.7 Implementation of AES Algorithm on FPGA and 

on software 

For some applications implementation on both FPGAs and software might 

be possible. For this reason, in work [82] a comparison between the AES 

implementation on a Xilinx Artix-7 FPGA and on software show the propagation 

delay for both implementations. On FPGA 40.26 ns and 80.36 ns were required 

for Encryption and Decryption respectively. In contrast, 5ms for encryption and 

decryption were required when implementing the design on software. 

 

8.8 Optimization and Implementation of AES 

Algorithm Based on FPGA 

Higher throughput using the minimum amount of resources was achieved 

optimizing the conventional implementation in work [83]. Rather than processing 

the steps inside the round independently, four look up tables for the rounds called 

T tables and four for the final round called S tables were implemented. These 

tables combine all the steps and are presented in Figure 58 and Figure 59 

respectively. Additionally, three tables for modular multiplications for the mixing 

step was employed. These tables are stored in dual port ROM structures. 

 

Figure 58 - Pipeline internal architecture of round [83] 
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Figure 59 - Pipeline internal architecture of final round [83] 

 

 The design was implemented as a fully unrolled inner and outer double 

pipelined architecture. No loops reusing hardware were implemented neither 

inside nor outside the rounds. Furthermore, the key expansion is performed 

during encryption generating the round keys when required and it also uses a 

fully unrolled outer-round pipelined architecture. A graphical illustration is given 

in Figure 60. The design was implemented on a Xilinx Virtex-6 FPGA. 

 

Figure 60 - Fully unrolled inner and outer double pipelined architecture [83] 

 

 

Even though the works described in this chapter have implemented AES 

using different approaches in terms of architecture, most of them mainly focus on 

reaching high speeds. However, for applications where area is the primary 

concern, none of the works above mentioned achieved what the design approach 

implemented in [84] has achieved in terms of resources used. Its detailed 

description is presented in chapter 9.  
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9 Proposed AES-256 

Implementation 

In this chapter, a different approach for the implementation of the AES-256 variant 

is described as presented in work [84]. The comparison in terms of the sequence 

of steps, resource costs, and scheduling for encryption and decryption between 

this approach and the conventional implementation explained in Chapter 7 is 

addressed. 

9.1 Application of steps 

The conventional implementation computes the full KeyExpansion before the first 

AddRoundKey step. In contrast, the proposed implementation suggests the 

generation of each RoundKey as they are required. In this way, the first 

AddRoundKey step is computed adding the RoundKey that is a part of the cipher 

key. Therefore, no operations are necessary for KeyExpansion in either the first 

or second AddRoundKey as the last columns of the cipher key are used as the 

RoundKey. 

 The application of the steps over the state differs with the conventional 

approach as well. Rather than computing the steps over all the elements of the 

state at the same time, this approach computes the steps each column at a time. 

 Additionally, [84] proposes combining the MixColumns step with the 

AddRoundKey step calling it the Mix step and the combination of AddRoundKey 

with the InvMixColumns step calling it InvMix. The Mix and InvMix steps depend 

on the round iteration, as they do not consider the MixColumns step for round 0 
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and 14. Consequently, the structure of the cipher can be represented in the same 

way for both encryption and decryption considering that the substitution of bytes 

commutes with the byte transposition as shown in Figure 61 and Figure 62. 

 

Figure 61 – Proposed architecture of AES-256 for encryption 

 

Figure 62 - Proposed architecture of AES-256 for deccryption 
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For comparison, a graphical illustration of the structure of AES-256 for 

decryption is provided in Figure 63. 

 

Figure 63 – AES-256 steps for decryption 

 

9.2 Resource Utilization 

This approach focuses on reusing S-box and D-box instances, as well as their 

inverse instances. A reduction of these instances is achieved changing the way 

the bricklayer permutations operate on the state. If the permutations act over 

individual columns in different cycles, the number of instances is divided by 4 for 

these steps. 

Figure 64 presents the application of the SubBytes step with only 4 S-box 

instances for all the state if only a column is computed at a time, while Figure 65 

demonstrates that only one D-box instance is needed for the MixColumn step, 

which in this approach is part of the Mix step. 
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Figure 64 - S-box instances for the SubBytes step 

 

 

Figure 65 - D-box instances for the Mix step 

 

Furthermore, if the KeyExpansion is implemented in such a way it reuses 

the same 4 S-box instances used for the SubBytes step, no more instances are 

required. Consequently, only 4 S-box instances and 1 D-box instance are used 

though all the encryption or decryption process. 

9.3 Scheduling 

For a clear demonstration Figure 66 shows the columns processed by the 

different steps emphasising each round with different colours. In cycle 1, the D-

box instance is used by the Mix step to operate on the first column of the state. 

Since this operation occurs in round 0, the Mix step only adds the RoundKey 



Proposed AES-256 Implementation 

Master Thesis - Saul García Rodríguez  101 

which is part of the cipher key. For that reason, no cycles to generate the 

RoundKey are required before the addition of the key. 

In cycle 2, the S-box instance is used by the SubBytes step to operate over 

the first column of the state, which has already been computed by the Mix step 

in the previous cycle. Besides, the second column is computed by the Mix step 

to be used in the next cycle in the SubBytes step. 

After the first column is processed by the SubBytes step in cycle 2, the 

bytes in the column are moved to different columns of the state through the 

ShiftRows step. 

After the last column is processed by the SubBytes step in cycle 5, all the 

bytes in the first column are ready to be used by the Mix step in the next cycle if 

the byte transposition for this column does not require an extra cycle. Therefore, 

the ShiftRows step for the last column and the Mix step for the first column occurs 

in the same cycle. 

Finally, for the last round the Mix step behaves like the AddRoundKey step, 

since the MixColumns step is not required. After the Mix step operates over the 

last round in cycle 74, the state becomes the encrypted block, also called 

ciphertext. 
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Figure 66 – Scheduling of AES-256 for encryption considering instances used based on [84]. 

 

In contrast to the conventional implementation, in this approach the 

KeyExpansion is performed as the RoundKeys are required. Hence, the RoundKey 

generation only employs 4 S-box instances and can reuse the instances used by 

the SubByte step if these are used in cycles with instances available as shown in 

Figure 67. 
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Figure 67 – Scheduling of AES-256 for encryption with key expansion in regard to instances based on [84]. 

 

Unfortunately, the same implementation for decryption is not possible 

because the RoundKeys are used backwards in the InvMix step. In other words, 

the first AddRoundKey step requires the last RoundKey in the ExpandedKey. Thus, 

the full KeyExpansion must be computed before using the RoundKey for round 0 

as presented in Figure 68. 
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Figure 68 - Scheduling of AES-256 for decryption with key expansion in regard to instances based on [84]. 



AES256 Encryption Implementation 

Master Thesis - Saul García Rodríguez  105 

 

10 AES256 Encryption 

Implementation 

In this chapter, the implementation of the AES-256 cipher for encryption is 

described, including the interaction between its internal modules. The importance 

and functionality of each of the modules is addressed to explain the relation that 

each module has with the AES algorithm. 

10.1 AES256 Encryption Top Module 

A top module was designed to synchronize the steps defined for encryption. The 

steps considered for the implementation are those provided by AES, except for 

the Mix step explained in detailed in Section 9.1, which combines the MixColumns 

step with the AddRoundKey step. 

The input signals of the top module are the clock signal, an asynchronous 

low active reset, a start signal, the key, and the plaintext to encrypt. The output 

signals are the ciphertext and a ready signal. A graphical illustration of the top 

module inputs and outputs is given in Figure 69. 
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Figure 69 – AES256 Top module for encryption 

 

The modules instantiated in the top module are: 

• Counter Module 

• Key Expansion Module 

• MixColumns 

• SubBytes Module 

• ShiftRows Module 

A block diagram showing the modules and their connections is presented in 

Figure 70. 
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Figure 70 – AES-256 modules and their connections in the top module for encryption 
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10.2 Counters Module 

In AES 15 rounds are required to encrypt a plaintext with a key and each round 

can be divided into 5 steps. The Counter module defines the number of the round 

and the step to synchronize all the other modules. To define the number of the 

round a counter was used, whereas a finite state machine was implemented to 

define the step. The first transition in the finite state machine is triggered by the 

start signal. The transition to the next step is triggered by a clock event since 

every step lasts only one clock cycle. When the encryption process is completed, 

a ready signal is set to high. 

The input signals of the Counter module are the clock signal, an 

asynchronous low active reset, and the start signal. The output signals are the 

number of the round, the step, and the ready signal. A graphical illustration of the 

Counter module inputs and outputs is given in Figure 71. 

 

 

Figure 71 – Counter module 

 

10.3 Key Expansion Module 

For encryption, RoundKeys are required, these are obtained through the 

KeyExpansion step. In round 0 and step 0, 256-bit registers are used to store the 

cipher key defined as input. No expansion is required for RoundKey 0 and 

RoundKey 1, since these are already stored elements of the cipher key. In step 1, 

the next required RoundKeys are calculated using the results from the 4 S-box 
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instances. Finally, the RoundKey reuses the registers used to store the initial key 

in step 4 before the RoundKey is required. 

The modules included in the Key Expansion Module are: 

• Round Key Module 

• Round Constant Module 

 

A block diagram showing the modules and their connections is presented in 

Figure 72. 
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Figure 72 – Modules instantiated in Key Expansion Module 
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The input signals of the Key Expansion module are the clock signal, an 

asynchronous low active reset, the number of the round, the step, the key, and 

the results from the S-box instances. The output signals are the columns required 

to be substituted, and the RoundKey. A graphical illustration of the Key Expansion 

module inputs and outputs is given in Figure 73. 

 

Figure 73 – Key Expansion module 

 

10.3.1 Round Constant Module 

To calculate some RoundKeys a RoundConstant is required. Depending on the 

round, a RoundConstant is calculated in step 0. The new RoundConstant is 

obtained shifting the previous one to the left beginning with a byte with value 1. 

The input signals of the Round Constant module are the clock signal, an 

asynchronous low active reset, the number of the round and the step. The only 

output signal is the RoundConstant. A graphical illustration of the Round Constant 

module inputs and outputs is given in Figure 74. 
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Figure 74 – Round Constant module 

 

10.3.2 Round Key Module 

This module selects the correct RoundKey from the registers used to store the 

RoundKeys. Not all the RoundKey is used in one step since the operations in this 

implementation approach operate on individual 32-bit columns rather than on the 

complete 128-bit state. For this reason, only one column of the RoundKey is used 

for addition with a column of the state per clock cycle. 

 The input signals of the Round Key module are the clock signal, an 

asynchronous low active reset, the number of the round, the step, the key, and 

the columns used to expand the key. The only output signal is the RoundKey. A 

graphical illustration of the Round Key module inputs and outputs is given in 

Figure 75. 
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Figure 75 – Round Key module 

 

10.4 MixColumns Module 

In this module, the column of the state to be processed is selected, depending on 

the specific step and round. The four columns of the state are selected from step 

0 to step 3 respectively. In round 0, the columns are taken from the input data of 

the top module. After round 0, the columns are taken from the registers where 

the state is stored. The columns are processed by the Mix Word module defined 

inside the MixColumns Module and the resulting processed columns are defined 

as the outputs of both modules. 

The output of the MixColumns module is used as the input of the SubBytes 

module. The results from the last round are the columns of the final state, which 

is the output of the top module. These results are stored in the registers defined 

in the ShiftRows module, where the state is stored. 

The input signals of the Mix Columns module are the clock signal, an 

asynchronous low active reset, the number of the round, the step, the plaintext, 

the output of the ShiftRows module, the output of the SubBytes module, and the 
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RoundKey. The only output signal is the processed column. A graphical illustration 

of the Mix Columns module inputs and outputs is given in Figure 76. 

 

 

Figure 76 – Mix Columns module 

 

10.4.1 Mix Word Module 

This module operates the Mix step on columns of the state previously selected 

by the MixColumns module. The Mix step combines the AddRoundKey step with 

the MixColumns step, for this reason the RoundKey is required by the module. 

The Mix step only adds the RoundKey to the column if the round number is equal 

to 0 or 14, on the contrary, it also performs the MixColumns step over the column 

of the state before the addition of the RoundKey. 

The addition of the key is done by means of a bitwise XOR operation. The 

MixColumns step for a column is done obtaining individually all the bytes in the 

resulting column in parallel using four instances of the ByteMix module. The 

output of each instance results in a byte of the processed column. 

The input signals of the Mix Word module are the number of the round, the 

RoundKey and the column to be processed. The only output signal is the 
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processed column. A graphical illustration of the Mix Word module inputs and 

outputs is given in Figure 77. 

 

 

Figure 77 – Mix Word module 

 

10.4.1.1 ByteMix Module 

The multiplication of a column with a circular matrix can be performed using four 

instances of the ByteMix module, one for each byte in the output, since the same 

operations must be followed to obtain an element in the column as shown in (99). 

[

𝑏0

𝑏1

𝑏2

𝑏3

] = [

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

] × [

𝑎0

𝑎1

𝑎2

𝑎3

] =

[
 
 
 
2(𝑎0) + 3(𝑎1) +    𝑎2   +     𝑎3  

    𝑎0   + 2(𝑎1) + 3(𝑎2) +    𝑎3  

    𝑎0   +     𝑎1   + 2(𝑎2) + 3(𝑎3)

3(𝑎0) +    𝑎1   +     𝑎2   + 2(𝑎3)]
 
 
 

 

=

[
 
 
 
2(𝑎0) + 3(𝑎1) + 𝑎2 + 𝑎3

2(𝑎1) + 3(𝑎2) + 𝑎3 + 𝑎0

2(𝑎2) + 3(𝑎3) + 𝑎0 + 𝑎1

2(𝑎3) + 3(𝑎0) + 𝑎1 + 𝑎2]
 
 
 

 

(99) 

The additions are achieved through bitwise XOR operations and the 

multiplications with more modules instantiated in this module, which is a module 

to multiply by 2 and a module to multiply by 3. 

The input signals of the ByteMix module are the four bytes in the column. 

The only output signal is a byte, which composes the column. A graphical 

illustration of the ByteMix module inputs and outputs is given in Figure 78. 
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Figure 78 - ByteMix module 

 

10.4.1.2 Multiply by 2 Module 

Multiplication by 2 is the basis to multiply by any other number required for AES. 

This operation is a modular multiplication in 𝐺𝐹(28), which can be implemented 

with a bitwise XOR operation and conditional operators. 

Multiplying a polynomial by 2 in 𝐺𝐹(28) is equal to multiplying it by 𝑥 as 

explained in Section 2.4.1. If 𝑎(𝑥) is a polynomial in 𝐺𝐹(28) and 𝑏(𝑥) the 

multiplication of 𝑎(𝑥) with 𝑥. 

𝑏(𝑥) = 𝑎(𝑥) × 𝑥
= (𝑎7𝑥

7 + 𝑎6𝑥
6 + 𝑎5𝑥

5 + 𝑎4𝑥
4 + 𝑎3𝑥

3 + 𝑎2𝑥
2 + 𝑎1𝑥 + 𝑎0)

× 𝑥
= 𝑎7𝑥

8 + 𝑎6𝑥
7 + 𝑎5𝑥

6 + 𝑎4𝑥
5 + 𝑎3𝑥

4 + 𝑎2𝑥
3 + 𝑎1𝑥

2

+ 𝑎0𝑥 

(100) 

If 𝑎7 = 1, the polynomial must be reduced with the reduction polynomial 

𝑚(𝑥) defined for Rijndael to be an element in 𝐺𝐹(28). This reduction is achieved 

adding 𝑚(𝑥) to 𝑏(𝑥). 

𝑏(𝑥) ≡ (𝑎7𝑥
8 + 𝑎6𝑥

7 + 𝑎5𝑥
6 + 𝑎4𝑥

5 + 𝑎3𝑥
4 + 𝑎2𝑥

3 + 𝑎1𝑥
2 + 𝑎0𝑥)

+ (𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1)
≡ (𝑎7 + 1)𝑥8 + 𝑎6𝑥

7 + 𝑎5𝑥
6 + 𝑎4𝑥

5 + (𝑎3 + 1)𝑥4

+ (𝑎2 + 1)𝑥3 + 𝑎1𝑥
2 + (𝑎0 + 1)𝑥 + 1

= 𝑏7𝑥
7 + 𝑏6𝑥

6 + 𝑏5𝑥
5 + 𝑏4𝑥

4 + 𝑏3𝑥
3 + 𝑏2𝑥

2 + 𝑏1𝑥 + 𝑏0 

(101) 

 

In conclusion, 𝑏𝑖 = 𝑎𝑖−1 for 5 ≤ 𝑖 ≤ 7 regardless of the value of 𝑎7. If 𝑎7 =

1, 𝑏𝑖 for 1 ≤ 𝑖 ≤ 4 is obtained adding polynomial 𝑎3𝑥
4 + 𝑎2𝑥

3 + 𝑎1𝑥
2 + 𝑎0𝑥 to 𝑥4 +

𝑥3 + 𝑥. Finally, if 𝑎7 = 1, then 𝑏0 = 1 otherwise 𝑏0 = 0. 
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The input signal of the Multiply by 2 module is the byte to be processed. 

The only output signal is the processed byte. A graphical illustration of the Multiply 

by 2 module inputs and outputs is given in Figure 79. 

 

 

Figure 79 – Multiply by 2 module 

 

10.4.1.3 Multiply by 3 Module 

Multiplication of polynomial 𝑎(𝑥) by 3 in 𝐺𝐹(28) can be implemented as explained 

in Section 2.4.1 and shown in (102). 

𝑏(𝑥) = 𝑎(𝑥) × (𝑥 + 1) = (𝑎(𝑥) × 𝑥) + 𝑎(𝑥) (102) 

 

This module uses the Multiply by 2 module to add to its output the input 

polynomial. Addition is done with a bitwise XOR. 

The input signal of the Multiply by 3 module is the byte to be processed. 

The only output signal is the processed byte. A graphical illustration of the Multiply 

by 3 module inputs and outputs is given in Figure 80. 

 

 

Figure 80 - Multiply by 3 module 
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10.5 SubBytes Module 

This module selects the data required to be substituted by the S-box. The S-box 

module is instantiated inside this module. Depending on the step and round, data 

for the KeyExpansion or the output of the MixColumns module can be selected. 

The S-box module contains the S-box used for the SubBytes step and for the 

KeyExpansion. The S-box implementation is based on work [85]. 

The input signals of the SubBytes module are the clock signal, an 

asynchronous low active reset, the number of the round, the step, columns of the 

expanded key to be substituted and the output of the MixColumns module. The 

only output signal is the processed column. A graphical illustration of the 

SubBytes module inputs and outputs is given in Figure 81. 

 

 

Figure 81 – SubBytes module 

 

 

Figure 82 - S-box module 
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10.6 ShiftRows Module 

This module computes the byte transposition of the SubBytes step. It also stores 

the output of the SubBytes module in registers in a specific order to perform the 

byte transposition over each column of the state in one cycle. The elements in 

the registers are used by the MixColumns module. 

The input signals of the SubBytes module are the clock signal, an 

asynchronous low active reset, the number of the round, the step, the output of 

the SubBytes module and the output of the MixColumns module. The only output 

signals are the states after the transposition. A graphical illustration of the 

ShiftRows module inputs and outputs is given in Figure 83. 

 

 

Figure 83 – ShiftRows module 
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11 AES256 Decryption 

Implementation 

In this chapter the FPGA implementation of the AES256 cipher for decryption is 

addressed. The modules used for the implementation, their interaction with other 

modules and their function are described. The structure of the chapter starts with 

the top module and after that the modules in it. The description of submodules in 

every module is also included in this chapter. The modules used for decryption 

have a strong similarity with the modules used for encryption. Consequently, the 

description of the modules focuses on its differences with its counterpart used for 

encryption. 

11.1 AES256 Decryption Top Module 

A top module containing the main modules was implemented to add modularity 

to the design. This module instantiates the main modules for their interaction with 

each other and with the input and output signals of the top module. Apart from 

that, it does not provide additional functionalities. 

The input signals of the top module are the clock signal, an asynchronous 

low active reset, the start signal, the cipher key and the ciphertext to decrypt. The 

output signals are the decrypted data and the ready signal. A graphical illustration 

of the top module inputs and outputs is given in Figure 84. 
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Figure 84 – AES256 Top module for decryption 

 

The submodules instantiated in the top module are: 

• Counters Dec module 

• Key Expansion Dec module 

• InvMixColumns module 

• InvSubBytes module 

• InvShiftRows module 

A block diagram showing the modules and their connections is presented in 

Figure 85. 
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Figure 85 – AES-256 modules and their connections in the top module for decryption 
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11.2 Counters Dec Module 

Compared to decryption, this module extends the finite state machine to expand 

the key completely before the beginning of decryption. After that, the 15 rounds 

with the 5 steps each are performed. When the counters responsible for the 

rounds and steps reach the value defined for the last cycle, the ciphertext is 

decrypted and the ready signal is set to high. 

The input signals of the Counter Dec module are the clock signal, an 

asynchronous low active reset, the start signal and the signal to notify that the 

key is expanded. The output signals are the number of the round, the step, and 

the ready signal. A graphical illustration of the Counter Dec module inputs and 

outputs is given in Figure 86. 

 

 

Figure 86 - Counters Dec module 

 

11.3 Key Expansion Dec Module 

Since the key is expanded at the beginning for decryption, a different 

implementation for the key expansion was employed. Rather than generating one 

new RoundKey in every round, which is equal to 5 steps or 5 clock cycles, in this 

module a new RoundKey is generated every 2 clock cycles. 

The modules included in the Key Expansion Dec Module are: 
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• Round Key Dec Module 

• Round Constant Dec Module 

A block diagram showing the modules and their connections is presented in 

Figure 87. 
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Figure 87 - Modules instantiated in Key Expansion Dec Module 



AES256 Decryption Implementation 

Master Thesis - Saul García Rodríguez  126 

The input signals of the Key Expansion Dec module are the clock signal, an 

asynchronous low active reset, the number of the round, the step, the key, and 

the results from S-box instances. The output signals are the number of the round 

in the KeyExpansion, columns required to be substituted, the ready signal of the 

KeyExpansion and the RoundKey. A graphical illustration of the Key Expansion 

Dec module inputs and outputs is given in Figure 88. 

 

 

Figure 88 - Key Expansion Dec module 

 

11.3.1 Round Key Dec Module 

This module apart from selecting the required RoundKey in the same way 

encryption does, it stores all the expanded key in registers defined by the number 

of the round for KeyExpansion. 

The input signals of the Round Key Dec module are the clock signal, an 

asynchronous low active reset, the number of the round, the step, the key, the 

round of KeyExpansion, and the columns that were used to expand the key. The 

only output signal is the RoundKey. A graphical illustration of the Round Key Dec 

module inputs and outputs is given in Figure 89. 
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Figure 89 - Round Key Dec module 

 

11.3.2 Round Constant Dec Module 

The round constant is calculated with the round and the step of the KeyExpansion, 

compared to the module for encryption which uses the round and the step of the 

encryption. 

The input signals of the Round Constant Dec module are the clock signal, an 

asynchronous low active reset, the number of the KeyExpansion round and the 

step of the KeyExpansion. The only output signal is the RoundConstant. A 

graphical illustration of the Round Constant Dec module inputs and outputs is 

given in Figure 90. 

 

 

Figure 90 - Round Constant Dec Module 
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11.4 Inv Mix Columns Module 

This module contains the same functions as the Mix Columns module. The only 

difference is the submodules instantiated in it which operate over the columns of 

the state the InvMix step. 

The input signals of the Inv Mix Columns module are the clock signal, an 

asynchronous low active reset, the number of the round, the step, the plaintext, 

the output of the Inv ShiftRows module, the output of the Inv SubBytes module, 

and the RoundKey. The only output signal is the processed column. A graphical 

illustration of the Inv Mix Columns module inputs and outputs is given in Figure 

91. 

 

 

Figure 91 – Inv Mix Columns module 

 

11.4.1 Inv Mix Word Module 

The InvMix step is performed in this module. It is important to remark the order 

of the steps that conforms the Mix and InvMix step. The Mix step computes the 
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MixColumns step before the AddRoundKey step, while in the InvMix step the first 

step performed is the AddRoundKey step and after that the InvMixColumns step. 

Apart form that differences the operations are implemented in the same way. In 

both steps, the mixing step is ignored for round 0 and round 14. 

The input signals of the Inv Mix Word module are the number of the round, 

the RoundKey and the column to be processed. The only output signal is the 

processed column. A graphical illustration of the Inv Mix Word module inputs and 

outputs is given in Figure 92. 

 

 

Figure 92 – Inv Mix Word module 

 

11.4.1.1 Inv ByteMix Module 

As in encryption, four instances of the module for modular multiplication are 

required. The fixed polynomial used for the InvMixColumns step is the inverse of 

the one used for the MixColumns step. The same module can be used to obtain 

the four output bytes of the matrix multiplication reordering its inputs as shown in 

(103). 

[

𝑏0

𝑏1

𝑏2

𝑏3

] = [

𝐸 𝐵 𝐷 9
9 𝐸 𝐵 𝐷
𝐷 9 𝐸 𝐵
𝐵 𝐷 9 𝐸

] × [

𝑎0

𝑎1

𝑎2

𝑎3

] =

[
 
 
 
𝐸(𝑎0) + 𝐵(𝑎1) + 𝐷(𝑎2) + 9(𝑎3)

9(𝑎0) + 𝐸(𝑎1) + 𝐵(𝑎2) + 𝐷(𝑎3)

𝐷(𝑎0) + 9(𝑎1) + 𝐸(𝑎2) + 𝐵(𝑎3)

𝐵(𝑎0) + 𝐷(𝑎1) + 9(𝑎2) + 𝐸(𝑎3)]
 
 
 

 

=

[
 
 
 
𝐸(𝑎0) + 𝐵(𝑎1) + 𝐷(𝑎2) + 9(𝑎3)

𝐸(𝑎1) + 𝐵(𝑎2) + 𝐷(𝑎3) + 9(𝑎0)

𝐸(𝑎2) + 𝐵(𝑎3) + 𝐷(𝑎0) + 9(𝑎1)

𝐸(𝑎3) + 𝐵(𝑎0) + 𝐷(𝑎1) + 9(𝑎2)]
 
 
 

 

(103) 
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The input signals of the Inv ByteMix module are the four bytes in the 

column. The only output signal is a byte, which forms the column. A graphical 

illustration of the Inv ByteMix module inputs and outputs is given in Figure 93. 

 

 

Figure 93 – Inv ByteMix module 

 

11.4.1.2 Multiply by 2 Module 

This module is the exact same module used for encryption. No difference 

between them exists. The input signal of the Multiply by 2 module is the byte to 

be processed. The only output signal is the processed byte. A graphical 

illustration of the Multiply by 2 module inputs and outputs is given in Figure 94. 

 

 

Figure 94 - Multiply by 2 module 

 

11.4.1.3 Multiply by 9 Module 

Modular multiplication of a polynomial by 9 is achieved using the module for 

modular multiplication by 2 and chaining their inputs with outputs as shown in 

(104). 
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𝑏(𝑥) = 𝑎(𝑥) × (𝑥3 + 1) = ((𝑎(𝑥) × 𝑥) × 𝑥) × 𝑥 + 𝑎(𝑥) (104) 

 

The input signal of the Multiply by 9 module is the byte to be processed. 

The only output signal is the processed byte. A graphical illustration of the Multiply 

by 9 module inputs and outputs is given in Figure 95. 

 

 

Figure 95 - Multiply by 9 module 

 

11.4.1.4 Multiply by D Module 

In the same way as modular multiplication by 9, this module is implanted chaining 

inputs and outputs of the Multiply by 2 module as shown in (105). 

𝑏(𝑥) = 𝑎(𝑥) × (𝑥3 + 𝑥2 + 1)

= ((𝑎(𝑥) × 𝑥) × 𝑥) × 𝑥 + (𝑎(𝑥) × 𝑥) × 𝑥 + 𝑎(𝑥) (105) 

 

The input signal of the Multiply by D module is the byte to be processed. 

The only output signal is the processed byte. A graphical illustration of the Multiply 

by D module inputs and outputs is given in Figure 96. 

 

 

Figure 96 - Multiply by D module 
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11.4.1.5 Multiply by B Module 

Modular multiplication by B is also implemented using the Multiply by 2 module 

as shown in (106). 

𝑏(𝑥) = 𝑎(𝑥) × (𝑥3 + 𝑥 + 1) = ((𝑎(𝑥) × 𝑥) × 𝑥) × 𝑥 + 𝑎(𝑥) × 𝑥 + 𝑎(𝑥) (106) 

 

The input signal of the Multiply by 2 module is the byte to be processed. 

The only output signal is the processed byte. A graphical illustration of the Multiply 

by 2 module inputs and outputs is given in Figure 97. 

 

 

Figure 97 - Multiply by B module 

 

11.4.1.6 Multiply by E Module 

Modular multiplication by E is implemented as shown in (110). 

𝑏(𝑥) = 𝑎(𝑥) × (𝑥3 + 𝑥 + 1) = ((𝑎(𝑥) × 𝑥) × 𝑥) × 𝑥 + 𝑎(𝑥) × 𝑥 + 𝑎(𝑥) (107) 

 

The input signal of the Multiply by 2 module is the byte to be processed. 

The only output signal is the processed byte. A graphical illustration of the Multiply 

by 2 module inputs and outputs is given in Figure 98. 
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Figure 98 - Multiply by E module 

 

11.5 Inv SubBytes Module 

Since the key is expanded before the process of decryption, rather than using the 

number of the round to use the S-box instances as for encryption, the module 

uses the number of round of the KeyExpansion. 

The input signals of the Inv SubBytes module are the clock signal, an 

asynchronous low active reset, the round in the expanded key, the step, columns 

of the expanded key to be substituted and the output of the Inv MixColumns 

module. The only output signal is the processed column. A graphical illustration 

of the Inv SubBytes module inputs and outputs is given in Figure 99. 

 

 

Figure 99 – Inv SubBytes module 
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11.6 Inv ShiftRows Module 

The transposition of bytes is done storing the output bytes of the Inv SubBytes 

module in the corresponding registers. The only difference between this module 

and its inverse module is the position of the bytes in the registers. 

The input signals of the Inv SubBytes module are the clock signal, an 

asynchronous low active reset, the number of the round, the step, the output of 

the Inv SubBytes module and the output of the Inv MixColumns module. The only 

output signals are the states after transposition. A graphical illustration of the Inv 

ShiftRows module inputs and outputs is given in Figure 100. 

 

 

Figure 100 – Inv ShiftRows module 
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12 Simulations 

In this chapter the steps that were followed to validate the implemented cipher for 

encryption, as well as for decryption are described. The generated simulations 

for validation are based on The Advance Encryption Standard Algorithm 

Validation Suite (AESAVS) [86]. 

AESAVS specifies Known Answer Tests and the Monte Carlo Test for 

encryption and decryption. NIST provides for these tests the AES Known Answer 

Test (KAT) Vectors, as well as AES Monte Carlo Test (MCT) Sample Vectors to 

validate results in simulations [87]. 

The vectors used by the simulations were taken from the NIST files without 

initialization vectors, those vectors are used for different modes of operation. The 

modes of operation are out of the scope of this work. Therefore, the mode that 

does not require initialization vectors is the Electronic Codebook (ECB) mode. 

This mode only requires a key and the plaintext or ciphertext depending on the 

cipher. 

12.1 Encryption Simulation 

Two different simulations were run to validate encryption in the cipher. The first 

test consists of 405 encryptions using the KAT vectors for encryption included in 

the AES KAT Vectors files related to the ECB mode of operation. The second test 

is a Monte Carlo Test that encrypts 100,000 different pairs of keys with plaintexts. 
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12.1.1 Known Answer Tests 

The KAT files specified for the ECB mode of operation provides in total 405 

different sets of vectors. Each set is composed by three elements: a cipher key, 

a plaintext, and the expected ciphertext after encryption. 

The simulation was designed to read the pair of keys and plaintexts from 

files, encrypt the plaintext with the key and compare the obtained ciphertext with 

the expected ciphertext from a file. The results of the simulation are saved in a 

file displaying the index of the test beginning in zero, the cipher key, the plaintext, 

the obtained ciphertext, the expected ciphertext and the test result, which is either 

“Passed” or “Failed” as shown in Figure 101. 

 

 

Figure 101 – AESAVS KAT simulation results for first two tests for encryption 

 

The simulation stops the tests if in one of the cases the obtained ciphertext 

does not match the expected ciphertext. If all the cases pass the test, at the end 

of the results file a comment is displayed notifying that the simulation is done and 

its result is equal to “Passed” as shown in Figure 102. 
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Figure 102 – AESAVS KAT simulation results for last test for encryption 

 

12.1.2 Monte Carlo Test 

The Monte Carlo Test runs 100,000 different encryptions. The test uses the same 

key provided by NIST for the first 1,000 cases and every 1,000 cases the key is 

updated. The key is updated 100 times, using 1,000 different plaintexts for each 

key.  

In the first case, the ciphertext obtained from the plaintext provided by 

NIST is used as the plaintext for the next case using the same key to obtain a 

new ciphertext. This process chains the outputs to the inputs. 

After the first 1,000 encryptions the last two ciphertexts are concatenated 

to create a new 256-bit vector. This vector is added with a bitwise XOR to the 

cipher key used for the 1,000 cases to update the value cipher key to be used for 

the next 1,000 cases. Taking into account that each key encrypts 1,000 

plaintexts, and there are 100 cipher keys, the total number of cases is 100,000. 

As in the KAT, the results after each 1,000 cases are saved in a file. Figure 

103 demonstrates the chaining of the obtained ciphertext with the next plaintext. 

In contrast to the KAT, the expected ciphertext is only displayed at the end of the 

Monte Carlo Test as shown in Figure 104, since it only needs to fail once in the 

100,000 cases to provide an unexpected result. 
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Figure 103 – Monte Carlo Test simulation results for first two keys for encryption 

 

 

Figure 104 - Monte Carlo Test simulation result for encryption 

 

12.2 Decryption Simulation 

Similar simulations were designed to validate decryption using the same files 

provided by NIST. For these simulations the vectors used as inputs to the cipher 

were the ciphertexts, while the expected results are the plaintext vectors. 

12.2.1 Known Answer Tests 

Figure 105 demonstrates the modification in the selection of vectors for the input 

and output for each decryption. The obtained result after decryption is the 

plaintext contrary to encryption. When the results in all case match the expected 

plaintexts, the file generated by the simulation displays at the end the simulation 

result as presented in Figure 106. If one of the cases fails, the simulation stops, 
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preventing the next cases from being tested, in the same way that the encryption 

simulation does. 

 

Figure 105 - AESAVS KAT simulation results for first two tests for decryption 

 

 

Figure 106 - AESAVS KAT simulation results for last test for decryption 

 

12.2.2 Monte Carlo Test 

The Monte Carlo Test for decryption follows the same process as the encryption 

simulation. However, a new cipher key and ciphertext is provided as shown in 

Figure 107. 

 

The plaintext obtained after the last encryption is compared with the plaintext 

vector provided by NIST. The expected vector is only displayed at the end of the 

file generated by the simulation as demonstrated in Figure 108. 
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Figure 107 – Monte Carlo Test simulation results for first two keys for decryption 

 

 

Figure 108 - Monte Carlo Test simulation result for decryption 

 

The Verilog code to run the simulations, as well as more results are provided in 

Appendix E.  
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13 Test on Xilinx Artix-7 FPGA 

In this chapter, the test design to observe the operation of the cipher on a Xilinx 

FPGA is explained. Furthermore, the structure and functions of the Graphical 

User Interface created to interact with the Xilinx board is addressed, as well as 

the external module required for data transmission. The description of a required 

top module that combines both functions encryption and decryption in one design 

is also considered in this section. 

13.1 GUI 

A Graphical User Interface was developed to send and receive data from the 

Xilinx board. The tool used to create the application was Qt Creator, due to its 

simplicity to design GUIs using C++. Qt Creator is a development environment 

which provides several C++ classes, as well as extensive documentation and 

support. 

 The created GUI includes functionalities to handle data and interact with 

the serial port of the PC. The GUI can: 

1. Identify the connection of the Xilinx board to the serial port, so it can be 

detected even if it is connected to a different port. 

2. Open and close the serial port connected to the Xilinx board. 

3. Select one of the 405 different KAT. 

4. Select the mode of behaviour of the cipher (encryption or decryption). 
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5. Transmit the array of bytes containing the mode, key, and text to encrypt 

or decrypt. 

6. Receive the encrypted or decrypted data. 

The first step to test the cipher with the GUI is connecting the board to the PC, 

after that, the user must press the button “Open Port” to open the serial port. After 

selecting a KAT case the respective key, plaintext and ciphertext are displayed. 

These vectors are obtained from a set of vectors stored in external files. There is 

a file for the 405 keys, a file storing the plaintext vectors and a file with ciphertext 

vectors. 

The user must select the mode of the cipher to define the input and the 

expected output of the cipher. For instance, if the encryption option is selected 

as the mode, the text to send is displayed as the “plaintext” and the vector with 

the expected value is defined as the “expected ciphertext”, whereas if the 

decryption option is selected, the text to send is defined as the “ciphertext” and 

the vector with the expected value as the “expected plaintext”. 

Finally, the user must press the button “Send” to transmit all the data to the 

board. The application then receives the data transmitted from the board and 

displays this information as the obtained plaintext or obtained ciphertext 

depending on the mode. The application compares the obtained and the 

expected value to display a test result. If both vectors have the same value, it is 

displayed “PASSED”, otherwise it displays “FAILED” as presented in Figure 109. 
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Figure 109 - Graphical User Interface for validation of AES-256 implementation 

 

13.2 Architecture 

To receive and transmit data, a Pmod USBUART interface board was connected 

to the FPGA Pmod ports and a top module was implemented containing modules 

for asynchronous serial communication data. 

The top module is conformed by four modules: a module to receive data 

from the PC called serial_rx, a module to transmit data to the PC called serial_tx 

and the encryption and decryption modules called aes256_enc and aes256_dec 

respectively as presented in Figure 110. 
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 The interaction between the PC and FPGA begins with the GUI sending 

an array of bytes though the serial port. The vector is conformed by the mode of 

the cipher, a key, and a text to be processed. The mode defines the behaviour of 

the cipher. If the byte is equal to 00, the cipher encrypts the text with the key 

provided, otherwise it decrypts the text. The text is called the plaintext when it is 

required to be encrypted, for decryption the input text is called the ciphertext. 

 The serial receiver module called serial_rx receives the array and sorts 

each byte in the corresponding register. Three registers are defined to store each 

element in the array. The mode byte is stored in an 8-bit register, the key in a 

256-bit register and the text in a 128-bit register. Both encryption and decryption 

modules read the registers where the key and text are stored, and depending on 

the value stored in the mode register the top module sends a start signal either 

to the encryption or the decryption module. Depending on the mode register the 

top module decides which output to select between the encryption and the 

decryption module. Finally, the selected output is sent using the serial transmitter 

module serial_tx. A graphical representation of the system architecture is given 

in Figure 110. 

 

Figure 110 - Architecture to test the implemented cipher on a Xilinx FPGA 
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A state machine with four states was designed to control the sequence of 

the tasks. The first state RX_DATA waits until all the bytes sent by the PC are 

received. Every time the serial_rx module receives a byte, this is stored in a 

register. A counter determines if all the bytes have been received. When the 

counter reaches its maximum value, the last byte received is stored and the signal 

rx_done is set to high triggering a transition to the AES state. In this state, 

depending on the mode, the aes256_enc or the aes256_dec module ciphers the 

text with the key. When the text has been encrypted or decrypted the 

corresponding module set the signal aes_ready to high triggering the transition 

to the next state called TX_DATA. In this state, a byte from the output of one of 

the cipher modules is selected by a counter. The transition to the next state called 

TX_BUSY is triggered by the next clock event. In this state, the serial_tx module 

transmits the byte to the PC through the Pmod interface. After the byte has been 

sent, the state transitions to the previous state to select a new byte to be sent. 

The counter reaches its maximum value, when all the bytes have been sent. In 

this case, the signal tx_done is set to high triggering a transition to the RX_DATA. 

 

 

Figure 111 - State Machine to receive, encrypt or decrypt data and transmit data. 
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14 Results 

In this chapter, results obtained from the design implemented are discussed 

compared to works from other sources, such as designs presented in Section 8, 

as well as open-source designs. 

14.1 State-of-the-Art analysis 

Researchers have implemented different AES designs on FPGAs through the 

years, being Xilinx FPGAs the most used for comparison with other 

implementations. AES designs depend on the length of the key and most of 

designs focus on the implementation of AES with a 128-bit key since the designs 

can be easily expanded to keys with different length. However, some works have 

implemented designs for 192- or 256-bit keys. These designs are expected to 

take more clock cycles to provide the processed data and use more resources 

depending on its design approach. 

A comparison of the results obtained from designs presented in Section 8 

is shown in Table 11. This analysis compares resources used such as slice LUTs, 

slice registers and slices, maximum frequency reached in MHz, clock cycles and 

throughput in Gbps. Some characteristics for some designs are not provided. 

 

 

 

 



Results 

Master Thesis - Saul García Rodríguez  147 

Design Device 
 

Key 
length 

Slice 
LUTs 

Slice 
Registers 

Slices 
Max. 
Freq. 
(MHz) 

Clock 
Cycles 

Through-
put 

(Gbps) 

[77] Artix-7  128 4115 3987 x x x x 

[78] Artix-7 
 

128 x x 
359 

(+ 8 BRAM) 
311.72 59 x 

[79] Virtex-6 
 

128 x x 
1002 

(+ 50 BRAM) 
254.453 x x 

[80] 
Kintex-

7 
 

128 19312 8311 
x 

(+ 42 BRAM) 
x 2758 17.80 

[81] Virtex-7  192 43673 48000 x 428.996 x 54.52 

[83] Virtex-6 
 

128 3028 8925 
2252 

(+244 BRAM) 
470.998 31 60.29 

[84] Virtex-7  256 1814 836 x 161 74 0.278 

 

Table 11 - AES implementations comparison in terms of resources and performance 

 

Additionally, a comparison between open-core designs demonstrating the 

number and percentage of slice LUTs and slice registers required is presented in  

Table 12. These designs were all synthetized using Xilinx Vivado Suite 

after selecting a Xilinx Artix-7 FPGA as the target device. Some designs differ to 

each other in key length or functions have i.e., [85] and [88] contained both 

encryption and decryption functions and accept more than one key length. 

 

Design Enc/Dec Key length Slice LUTs LUT Util% Slice Registers FF Util% 

[85] Enc/Dec 128/192/256 2756 2.05 1538 0.57 

[88] Enc/Dec 128/256 3327 2.47 2990 1.11 

[89] Enc 128 1690 1.26 1242 0.46 

[90] Enc 128 9719 7.22 3712 1.30 

[91] Enc 128 4402 3.27 9519 3.54 

 

Table 12 – AES implementation comparison between open-source designs 
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 More details were observed modifiying design [85] to split the design into 

one for encryption and another for decryption both using a 256-bit key. The 

results of both new designs are presented in Table 13. 

 

Design Enc/Dec Key length Slice LUTs LUT Util% Slice Registers FF Util% 

Enc [85] Enc 256 1717 1.28 1117 0.41 

Dec [85] Dec 256 2114 1.57 1117 0.41 

 

Table 13 - Encryption and decryption designs from [85] 

 

14.2 Results and Discussion 

The resource utilization between [84], [85] and the design from this work is 

compared in this section. The reason [84] was selected for analysis is that our 

implementation is based on its design approach as explained in Section 9, 

whereas design [85] was selected due to its key length and its functionality for 

encryption and decryption. The results obtained from these designs and ours are 

shown in Figure 112, Figure 113 and Figure 114 respectively. 

 

 

Figure 112 - Resource utilization [84] 
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Figure 113 - Resource utilization from Enc [85] 

 

 

Figure 114 - Resource utilization from our design 

 

The resource utilization reports generated by Xilinx Vivado for Enc [85] 

and our design are presented in Figure 115 and Figure 116 respectively, where 

the use of distributed RAM on Enc [85] to store the expanded key is shown. 

 

 

Figure 115 – Resource utilization report from Vivado for Enc [85] on Artix-7 FPGA 
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Figure 116 - Resource utilization report from Vivado for our encryption design on Artix-7 FPGA 

 

To compare decryption, the resource utilization reports generated by Xilinx 

Vivado for Dec [85] and our design are presented in . 

 

 

Figure 117 - Resource utilization report from Vivado for Dec [85] on Artix-7 FPGA 
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Figure 118 - Resource utilization report from Vivado for our decryption design on Artix-7 FPGA 

 

In these reports, an increase in resources in our decryption design is 

observed compared to the encryption design since the expanded key must be 

stored. Furthermore, a constraint preventing memory usage was specified 

increasing the number of slice LUTs and slice registers due to the storage of the 

expanded key. The resources used for key expansion in both designs are shown 

in Figure 119 and Figure 120. 

 

 

Figure 119 – Distributed RAM usage in Dec [85] 

 

 

Figure 120 - Slice LUTs and slice registers usage for expanded key in our decryption design 
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15 Conclusions 

In this work a different implementation approach was implemented to reduce the 

number of required instances for the KeyExpansion, SubBytes and MixColumns 

step as proposed in [84]. In this approach more than one step operates in the 

same clock cycle on 32 bits of the state, contrary to the conventional approach 

that operates on the 128-bit state one step per clock cycle. This approach 

demonstrates a reduction in area compared to the conventional approach. 

However, decryption takes more cycles than encryption since the same approach 

for KeyExpansion cannot be implemented due to the order in which the RoundKeys 

are used. Furthermore, decryption requires more area than encryption since the 

complete ExpandedKey must be stored compared to encryption which reuses the 

registers used by the RoundKeys every time a new one is calculated. 
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16 Future Work 

A different approach to reduce the area required for decryption can be 

implemented, if first the ExpandedKey is computed reusing the same registers to 

store the RoundKeys in the same way as for encryption. From the last RoundKeys 

the ExpandedKey can be computed backwards as the new RoundKeys are 

required. This computation can reuse the S-box instances available in certain 

clock cycles as for encryption. This approach is not intended to reduce the 

number of clock cycles required to decrypt data, but to reduce the implementation 

area. 

The designs here presented can be extended to be used for encryption or 

decryption of sets of blocks depending on the modes of operation described in 

[92]. 

Furthermore, several applications can make use of this designs to provide 

security to the hardware, such as bitstream protection to add confidentiality to the 

IP designs programmed into the FPGA. This can be achieved encrypting the 

bitstream before being programmed into the device and decrypting it in the device 

with a key stored previously in the device. 
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Appendix A – Groups, Rings and Fields 

 

Definition A.1. The structure (𝐺,+) conformed by set 𝐺 and an arbitrary 

operation (+) defined on its elements is considered an Abelian group if and only 

if the operation satisfies the following properties for the elements of 𝐺: 

1. Closed: ∀ 𝑎, 𝑏 ∈  𝐺 ∶  𝑎 +  𝑏 ∈  𝐺 (108) 

2. Associative: ∀ 𝑎, 𝑏, 𝑐 ∈  𝐺 ∶  (𝑎 +  𝑏)  +  𝑐 =  𝑎 + (𝑏 +  𝑐) (109) 

3. Commutative: ∀ 𝑎, 𝑏 ∈  𝐺 ∶  𝑎 +  𝑏 =  𝑏 +  𝑎 (110) 

4. Neutral 
element: 

∃ 0 ∈  𝐺, ∀ 𝑎 ∈  𝐺 ∶  𝑎 +  0 =  𝑎 (111) 

5. Inverse 
elements: 

∀ 𝑎 ∈  𝐺, ∃ 𝑏 ∈  𝐺 ∶  𝑎 +  𝑏 =  0 (112) 

 

Definition A.2. The structure (𝑅,+,∙) conformed by set 𝑅 and two operations (+,∙

) defined on its elements is considered a ring if and only if: 

1. Structure (𝑅,+) conformed by set 𝑅 and operation (+) meets the 

requirements to be considered an Abelian group. 

2. Operation (∙) in structure (𝑅,∙) is closed, and associative on its elements. 

3. Operation (+,∙) satisfy: 

Distributivity: ∀ 𝑎, 𝑏, 𝑐 ∈  𝑅 ∶  (𝑎 +  𝑏)  ·  𝑐 =  (𝑎 ·  𝑐)  +  (𝑏 ·  𝑐) (113) 

 

If operation (∙) also satisfies the property of commutativity, ring (𝑅,+,∙) is called 

commutative ring. 
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 Definition A.3.  The structure (𝐹,+,∙) conformed by set 𝐹 and two operations 

(+,∙) defined on its elements is considered a field if and only if: 

1. (𝐹, +,∙) is a commutative ring. 

2. Exists an inverse element in set 𝐹 with respect to operation (∙) for all 

elements of 𝐹, except for the neutral element of (𝐹,+) denoted by 𝟎. 
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Appendix B – Substitution Tables 

 

In this section tabular representation is given for the Rijndael S-box SRD, inverse 

Rijndael S-box SRD
−1 , affine transformation Aff8, inverse affine transformation Aff8

−1 

and the transformation Inv8 that maps an element with its inverse in 𝐺𝐹(28) . The 

relationship between all the transformations is given by 

SRD[𝑎] = Aff8(Inv8(𝑎)) (114) 

SRD
−1[𝑎] = Inv8(Aff8

−1(𝑎)). (115) 

B.1 Rijndael S-box 𝐒𝐑𝐃 

Tabular representation of the Rijndael substitution box SRD used in the SubBytes 

step for encryption of a plaintext is presented in Table 14. 

 y 
0 1 2 3 4 5 6 7 8 9 A B C D E F 

𝑥 

0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76 
1 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0 
2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15 
3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75 
4 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84 
5 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A AC 58 CF 
6 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8 
7 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2 
8 CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 79 
9 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB 
A E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79 
B E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08 
C BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F AB BD 8B 8A 
D 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E 
E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF 
F 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16 

Table 14 - Tabular representation of S-box 𝑆𝑅𝐷(𝑥𝑦) 
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B.2 Rijndael inverse S-box 𝐒𝐑𝐃
−𝟏 

Table 15 presents a tabular representation of the Rijndael inverse substitution 

box SRD
−1  used in the InvSubBytes step for decryption of a ciphertext. 

 

 𝑦 
0 1 2 3 4 5 6 7 8 9 A B C D E F 

𝑥 

0 52 09 6A D5 30 36 A5 38 BF 40 A3 9E 81 F3 D7 7B 
1 7C E3 39 82 9B 2F FF 87 34 8E 43 44 C4 DE E9 CB 
2 54 7B 94 32 A6 C2 23 3D EE 4C 95 0B 42 FA C3 4E 
3 08 2E A1 66 28 D9 24 B2 76 5B A2 49 6D 8B D1 25 
4 72 F8 F6 64 86 68 98 16 D4 A4 5C CC 5D 65 B6 92 
5 6C 70 48 50 FD ED B9 DA 5E 15 46 57 A7 8D 9D 84 
6 90 D8 AB 00 8C BC D3 0A F7 E4 58 05 B8 B3 45 06 
7 D0 2C 1E 8F CA 3F 0F 02 C1 AF BD 03 01 13 8A 6B 
8 3A 91 11 41 4F 67 DC EA 97 F2 CF CE F0 B4 E6 73 
9 96 AC 74 22 E7 AD 35 85 E2 F9 37 E8 1C 75 DF 6E 
A 47 F1 1A 71 1D 29 C5 89 6F B7 62 0E AA 18 BE 1B 
B FC 56 3E 4B C6 D2 79 20 9A DB C0 FE 78 CD 5A F4 
C 1F DD A8 33 88 07 C7 31 B1 12 10 59 27 80 EC 5F 
D 60 51 7F A9 19 B5 4A 0D 2D E5 7A 9F 93 C9 9C EF 
E A0 E0 3B 4D AE 2A F5 B0 C8 EB BB 3C 83 53 99 61 
F 17 2B 04 7E BA 77 D6 26 E1 69 14 63 55 21 0C 7D 

 

Table 15 - Tabular representation of the inverse S-box 𝑆𝑅𝐷
−1(𝑥𝑦) 
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B.3 Affine Transformation 𝐀𝐟𝐟𝟖 

Tabular representation of the affine transformation Aff8 used to obtain the 

Rijndael substitution box SRD is presented in Table 16. 

 

 𝑦 
0 1 2 3 4 5 6 7 8 9 A B C D E F 

𝑥 

0 63 7C 5D 42 1F 00 21 3E 9B 84 A5 BA E7 F8 D9 C6 
1 92 8D AC B3 EE F1 D0 CF 6A 75 54 4B 16 09 28 37 
2 80 9F BE A1 FC E3 C2 DD 78 67 46 59 04 1B 3A 25 
3 71 6E 4F 50 0D 12 33 2C 89 96 B7 A8 F5 EA CB D4 
4 A4 BB 9A 85 D8 67 E6 F9 5C 43 62 7D 20 3F 1E 01 
5 55 4A 6B 74 29 36 17 08 AD B2 93 8C D1 CE EF F0 
6 47 58 79 66 3B 24 05 1A BF A0 81 9E C3 DC FD E2 
7 B6 A9 88 97 CA D5 F4 EB 4E 51 70 6F 32 2D 0C 13 
8 EC F3 D2 CD 90 8F AE B1 14 0B 2A 35 68 77 56 49 
9 1D 02 23 3C 61 7E 5F 40 E5 FA DB C4 99 86 A7 B8 
A 0F 10 31 2E 73 6C 4D 52 F7 E8 C9 D6 8B 94 B5 AA 
B FE E1 C0 DF 82 9D BC A3 06 19 38 27 7A 65 44 5B 
C 2B 34 15 0A 57 48 69 76 D3 CC ED F2 AF B0 91 8E 
D DA C5 E4 FB A6 B9 98 87 22 3D 1C 03 5E 41 60 7F 
E C8 D7 F6 E9 B4 AB 8A 95 30 2F 0E 11 4C 53 72 6D 
F 39 26 07 18 45 5A 7B 64 C1 DE FF E0 BD A2 83 9C 

 

Table 16 - Tabular representation of the affine transformation 𝐴𝑓𝑓8(𝑥𝑦) 
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B.4 Inverse Affine Transformation 𝐀𝐟𝐟𝟖
−𝟏 

Table 17 presents a tabular representation of the inverse affine transformation 

Aff8
−1 to obtain the Rijndael inverse substitution box SRD

−1 . 

 

 𝑦 
0 1 2 3 4 5 6 7 8 9 A B C D E F 

𝑥 

0 05 4F 91 DB 2C 66 B8 F2 57 1D C3 89 7E 34 EA A0 
1 A1 EB 35 7F 88 C2 1C 56 F3 B9 67 2D DA 90 4E 04 
2 4C 06 D8 92 65 2F F1 BB 1E 54 8A C0 37 7D A3 E9 
3 E8 A2 7C 36 C1 8B 55 1F BA F0 2E 64 93 D9 07 4D 
4 97 DD 03 49 BE F4 2A 60 C5 8F 51 1B EC A6 78 32 
5 33 79 A7 ED 1A 50 8E C4 61 2B F5 BF 48 02 DC 96 
6 DE 94 4A 00 F7 BD 63 29 8C C6 18 52 A5 EF 31 7B 
7 7A 30 EE A4 53 19 C7 8D 28 62 BC F6 01 4B 95 DF 
8 20 6A B4 FE 09 43 9D D7 72 38 E6 AC 5B 11 CF 85 
9 84 CE 10 5A AD E7 39 73 D6 9C 42 08 FF B5 6B 21 
A 69 23 FD B7 40 0A D4 9E 3B 71 AF E5 12 58 86 CC 
B CD 87 59 13 E4 AE 70 3A 9F D5 0B 41 B6 FC 22 68 
C B2 F8 26 6C 9B D1 0F 45 E0 AA 74 3E C9 83 5D 17 
D 16 5C 82 C8 3F 75 AB E1 44 0E D0 9A 6D 27 F9 B3 
E FB B1 6F 25 D2 98 46 0C A9 E3 3D 77 80 CA 14 5E 
F 5F 15 CB 81 76 3C E2 A8 0D 47 99 D3 24 6E B0 FA 

 

Table 17 - Tabular representation of the affine transformation 𝐴𝑓𝑓8
−1(𝑥𝑦) 
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B.5 Inverse Element in 𝑮𝑭(𝟐𝟖) Transformation 𝐈𝐧𝐯𝟖 

Tabular representation of the transformation Inv8, which maps elements with its 

inverse in 𝐺𝐹(28) used to obtain the Rijndael substitution box SRD, is presented 

in Table 18. 

 

 𝑦 
0 1 2 3 4 5 6 7 8 9 A B C D E F 

𝑥 

0 00 01 8D F6 CB 52 7B D1 E8 4F 29 C0 B0 E1 E5 C7 
1 74 B4 AA 4B 99 2B 60 5F 58 3F FD CC FF 40 EE B2 
2 3A 6E 5A F1 55 4D A8 C9 C1 0A 98 15 30 44 A2 C2 
3 2C 45 92 6C F3 39 66 42 F2 35 20 6F 77 BB 59 19 
4 1D FE 37 67 2D 31 F5 69 A7 64 AB 13 54 25 E9 09 
5 ED 5C 05 CA 4C 24 87 BF 18 3E 22 F0 51 EC 61 17 
6 16 5E AF D3 49 A6 36 43 F4 47 91 DF 33 93 21 3B 
7 79 B7 97 85 10 B5 BA 3C B6 70 D0 06 A1 FA 81 82 
8 83 7E 7F 80 96 73 BE 56 9B 9E 95 D9 F7 02 B9 A4 
9 DE 6A 32 6D D8 8A 84 72 2A 14 9F 88 F9 DC 89 9A 
A FB 7C 2E C3 8F B8 65 48 26 C8 12 4A CE E7 D2 62 
B 0C E0 1F EF 11 75 78 71 A5 8E 76 3D BD BC 86 57 
C 0B 28 2F A3 DA D4 E4 0F A9 27 53 04 1B FC AC E6 
D 7A 07 AE 63 C5 DB E2 EA 94 8B C4 D5 9D F8 90 6B 
E B1 0D D6 EB C6 0E CF AD 08 4E D7 E3 5D 50 1E B3 
F 5B 23 38 34 68 46 03 8C DD 9C 7D A0 CD 1A 41 1C 

 

Table 18 - Tabular representation of transformation 𝐼𝑛𝑣8(𝑥𝑦)  
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Appendix C – AES-256 code for encryption  

C.1 Top Module 

`timescale 1ns / 1ps 
 
// ---------- ADVANCED ENCRYPTION STANDARD --- AES-256 --- ENCRYPTION ---------- 
 
module aes256_enc  ( 
                    clk, 
                    reset_n, 
                    start, 
                    key_in, 
                    data_in, 
                    data_out, 
                    ready 
                    ); 
 
     
// ---------- MODULE INTERFACE ---------- 
 
input               clk;                // global clock 
input               reset_n;            // global async negative edge reset 
input               start;              // start pulse 
input       [255:0] key_in;             // 256-bit key 
input       [127:0] data_in;            // 128-bit block size of plaintext 
output wire [127:0] data_out;           // 128-bit ciphertext and also as storage block 
output wire         ready;              // output ready 
 
 
// ---------- MODULE REGISTERS AND SIGNALS ---------- 
 
wire    [3:0]       rnd_cnt;            // round counter [0 to 14] 
wire    [2:0]       step;               // step counter [0 to 4] 
wire    [31:0]      mix_out;            // processed column after mix operation 
wire    [31:0]      sub_out;            // processed column after substitution bytes operation 
wire    [127:0]     block_2;            // storage block for shift rows operation 
wire    [31:0]      rnd_key;            // round key for add round key operation 
wire    [31:0]      k3, k7_rot;         // word 3 and word 7 used for key expansion 
 
 
// ---------- MODULES INSTANTIATION ---------- 
 
// ---------- ROUND AND STEP COUNTERS ---------- 
 
counters        counters_u     ( 
                                clk, 
                                reset_n, 
                                start, 
                                rnd_cnt,    // output 
                                step,       // output 
                                ready       // output 
                                ); 
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// ---------- MIX COLUMNS UNIT ---------- 
 
mix_columns     mix_columns_u  ( 
                                clk, 
                                reset_n, 
                                rnd_cnt, 
                                step, 
                                data_in, 
                                data_out, 
                                block_2, 
                                sub_out, 
                                rnd_key, 
                                mix_out     // output 
                                ); 
 
// ---------- SUB BYTES UNIT ---------- 
 
sub_bytes       sub_bytes_u    ( 
                                clk, 
                                reset_n, 
                                rnd_cnt, 
                                step, 
                                k3, k7_rot, 
                                mix_out, 
                                sub_out      // output 
                                ); 
 
// ---------- SHIFT ROWS UNIT ---------- 
 
shift_rows      shift_rows_u   ( 
                                clk, 
                                reset_n, 
                                rnd_cnt, 
                                step, 
                                sub_out, 
                                mix_out, 
                                data_out,   // output 
                                block_2     // output 
                                ); 
                                 
// ---------- KEY EXPANSION UNIT ---------- 
 
key_exp         key_exp_u      ( 
                                clk, 
                                reset_n, 
                                rnd_cnt, 
                                step, 
                                key_in, 
                                sub_out, 
                                k3, k7_rot, // output 
                                rnd_key     // output 
                                ); 
 
 
endmodule  
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C.2 Counters Module 

`timescale 1ns / 1ps 
 
// ---------- ROUND AND STEP COUNTERS ---------- 
 
module counters    ( 
                    clk, 
                    reset_n, 
                    start, 
                    rnd_cnt,            // output 
                    step,               // output 
                    ready               // output 
                    ); 
 
 
// ---------- MODULE INTERFACE ---------- 
 
input               clk;                // global clock 
input               reset_n;            // global negative edge reset 
input               start;              // start encryption 
output reg  [3:0]   rnd_cnt;            // round counter [0 to 14] 
output reg  [2:0]   step;               // step counter [0 to 4] 
output reg          ready;              // encryption done 
 
 
// ---------- MODULE REGISTERS AND SIGNALS ---------- 
 
parameter           max_rnd = 4'd14;    // AES-256 requires 14 rounds (plus round 0) 
parameter           max_steps = 4'd4;   // every round consists on 5 steps (0 to 4) 
 
reg [2:0]           current_state, next_state; 
parameter           IDLE = 3'd6, 
                    S0 = 3'd0, 
                    S1 = 3'd1, 
                    S2 = 3'd2, 
                    S3 = 3'd3, 
                    S4 = 3'd4, 
                    DONE = 3'd5; 
 
 
// ---------- STATE MACHINE ---------- 
 
always @ (posedge clk or negedge reset_n) 
  begin: STATE_MEMORY 
   
    if (!reset_n)   current_state <= IDLE; 
    else            current_state <= next_state; 
     
  end 
 
 
always @ (current_state or start or ready or reset_n) 
  begin: NEXT_STATE_LOGIC 
   
    case (current_state) 
      IDLE :    next_state = (start) ? S1 : IDLE;   // start step counter with start 
      S0 :      next_state = (ready) ? DONE : S1;   // to DONE if ready, else continue encryption 
      S1 :      next_state = S2; 
      S2 :      next_state = S3; 
      S3 :      next_state = S4; 
      S4 :      next_state = S0;                    // resets after step = 4 
      DONE:     next_state = (start) ? S1 : DONE;   // it can start from DONE state 
      default : next_state = IDLE; 
    endcase 
     
  end 
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always @ (current_state or rnd_cnt) 
  begin: OUTPUT_LOGIC 
   
    case (current_state) 
      IDLE :  begin   
                step = 3'd0; 
                ready = 1'b0; 
              end 
               
      S0 :    begin 
                step = 3'd0; 
                if (rnd_cnt == 0)   ready = 1'b1;   // when round counter finishes and step = 0 
                else                ready = 1'b0; 
              end 
 
      S1 :    begin 
                step = 3'd1; 
                ready = 1'b0; 
              end 
       
      S2 :    begin 
                step = 3'd2; 
                ready = 1'b0; 
              end 
       
      S3 :    begin 
                step = 3'd3; 
                ready = 1'b0; 
              end 
       
      S4 :    begin 
                step = 3'd4; 
                ready = 1'b0; 
              end 
                
      DONE :  begin   
                step = 3'd0; 
                ready = 1'b1;       // Encryption DONE 
              end 
               
      default : begin   
                  step = 3'd0; 
                  ready = 1'b0; 
                end 
    endcase 
     
  end 
 
always @ (posedge clk or negedge reset_n) 
  begin 
   
    if (!reset_n) 
      begin 
        rnd_cnt <= 4'b0;                            // reset of round counter 
      end 
    else 
      if(current_state == S3)                       // round counter only when step = 3 
        if (rnd_cnt == max_rnd) rnd_cnt <= 4'b0;    // reset when round = 14 
        else                    rnd_cnt <= rnd_cnt + 1; 
 
  end 
 
 
endmodule  
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C.3 Key Expansion Module 

`timescale 1ns / 1ps 
 
// ---------- KEY EXPANSION ---------- 
 
module key_exp     ( 
                    clk, 
                    reset_n, 
                    rnd_cnt, 
                    step, 
                    key_in, 
                    sub_out, 
                    k3,k7_rot, 
                    rnd_key 
                    ); 
 
 
// ---------- MODULE INTERFACE ---------- 
 
input               clk;                // global clock 
input               reset_n;            // global negative edge reset 
input       [3:0]   rnd_cnt;            // round counter [0 to 14] 
input       [2:0]   step;               // step counter [0 to 4] 
input       [255:0] key_in;             // 256-bit key 
input       [31:0]  sub_out;            // processed column after substitution bytes operation 
output reg  [31:0]  k3,k7_rot;         // word 3 and word 7 rotated used for key expansion 
output wire [31:0]  rnd_key;            // round key for add round key operation 
 
 
// ---------- MODULE REGISTERS AND SIGNALS ---------- 
 
reg     [31:0]      k0_next, k1_next, k2_next, k3_next; // words used for first part of key expansion 
reg     [31:0]      k4_next, k5_next, k6_next, k7_next; // words used for second part of key expansion 
reg     [31:0]      k0, k1, k2;         // words used for first part of key expansion 
reg     [31:0]      k4, k5, k6;         // words used for second part of key expansion 
wire    [31:0]      RC;                 // round constant for key expansion 
 
 
// ---------- MODULE IMPLEMENTATION ---------- 
 
always @ (posedge clk or negedge reset_n) 
  begin: KEY_EXPANSION 
   
    if (!reset_n)                       // reset words registers 
      begin 
        k0 <= 31'b0; 
        k1 <= 31'b0; 
        k2 <= 31'b0; 
        k3 <= 31'b0; 
        k4 <= 31'b0; 
        k5 <= 31'b0; 
        k6 <= 31'b0; 
        k7_rot <= 31'b0; 
        k0_next <= 31'b0; 
        k1_next <= 31'b0; 
        k2_next <= 31'b0; 
        k3_next <= 31'b0; 
        k4_next <= 31'b0; 
        k5_next <= 31'b0; 
        k6_next <= 31'b0; 
        k7_next <= 31'b0; 
      end 
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    else 
        case (step) 
                                        // round 0 
          0:  if (rnd_cnt == 0) 
                begin                   // last column of key_in is k7 
                  {k0,k1,k2,k3,k4,k5,k6,{k7_rot[7:0],k7_rot[31:8]}} <= key_in; 
                end 
                 
 
          1:  begin                     // First Part                            
                                        // when j mod Nk = 0, (j = 8,16...56) 
                k0_next = k0 ^ sub_out ^ RC;   
                k1_next = k0_next ^ k1; 
                k2_next = k1_next ^ k2; 
                k3_next = k2_next ^ k3;                                        
                                        // Second Part 
                k4_next = sub_out ^ k4; // when j mod Nk = 4, (j = 12,20...52) 
                k5_next = k4_next ^ k5; 
                k6_next = k5_next ^ k6; 
                k7_next = k6_next ^ {k7_rot[7:0],k7_rot[31:8]}; // k7 NOT rotated 
              end 
 
          4:  begin                     // 2,4...12 for Mix_0 in 2,4...14 
                if (rnd_cnt[0] == 0 && rnd_cnt > 1) 
                  begin 
                    k0 <= k0_next;      // update key columns for first part 
                    k1 <= k1_next; 
                    k2 <= k2_next; 
                    k3 <= k3_next; 
                  end                   // 3,5...13 for Mix_0 in 3,5...13 
                if (rnd_cnt[0] == 1 && rnd_cnt > 2) 
                  begin 
                    k4 <= k4_next;      // update key columns for second part 
                    k5 <= k5_next; 
                    k6 <= k6_next; 
                    k7_rot <= {k7_next[23:0],k7_next[31:24]}; 
                  end 
              end 
 
        endcase 
       
  end 
 
 
round_constant  round_constant_u   ( 
                                    clk, 
                                    reset_n, 
                                    rnd_cnt, 
                                    step, 
                                    RC          // output 
                                    ); 
 
round_key       round_key_u        ( 
                                    clk, 
                                    reset_n, 
                                    rnd_cnt, 
                                    step, 
                                    key_in[255:224], 
                                    k0,k1,k2,k3, 
                                    k4,k5,k6,{k7_rot[7:0],k7_rot[31:8]}, 
                                    rnd_key     // output 
                                    ); 
                                     
endmodule  
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C.4 Round Constant Module 

`timescale 1ns / 1ps 
 
/* 
            Round Constant 
        for K2  K4  K6  K8 K10 K12 K14 
    i       1   2   3   4   5   6   7 
    ----------------------------------- 
    RC[i]  01  02  04  08  10  20  40   
 
*/ 
 
// ---------- ROUND CONSTANT ---------- 
 
module round_constant  ( 
                        clk, 
                        reset_n, 
                        rnd_cnt, 
                        step, 
                        RC                  // output 
                        ); 
 
 
// ---------- MODULE INTERFACE ---------- 
 
input               clk;                // global clock 
input               reset_n;            // global negative edge reset    
input       [3:0]   rnd_cnt;            // round counter [0 to 14] 
input       [2:0]   step;               // step counter [0 to 4] 
output reg  [31:0]  RC;                 // round constant for key expansion 
 
 
// ---------- MODULE IMPLEMENTATION ---------- 
 
always @ (posedge clk or negedge reset_n) 
  begin: ROUND_CONSTANT 
   
    if (!reset_n) RC <= 32'h0;          // reset RC register 
                                        // rounds 1,3...13 
    else if (step == 0 && rnd_cnt[0] != 0)   
                                        // RC[i] = RC[i-1] << 1 
        RC <= (rnd_cnt == 1) ? 32'h01000000 : {RC[30:0],1'b0}; 
         
  end 
 
 
endmodule 
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C.5 Round Key Module 

`timescale 1ns / 1ps 
 
// ---------- ROUND KEY ---------- 
 
module round_key   ( 
                    clk, 
                    reset_n, 
                    rnd_cnt, 
                    step, 
                    key_in, 
                    k0,k1,k2,k3, 
                    k4,k5,k6,k7, 
                    rnd_key             // output 
                    ); 
 
 
// ---------- MODULE INTERFACE ---------- 
 
input               clk;                // global clock 
input               reset_n;            // global negative edge reset 
input       [3:0]   rnd_cnt;            // round counter [0 to 14] 
input       [2:0]   step;               // step counter [0 to 4] 
input       [31:0]  key_in;             // 256-bit key 
input       [31:0]  k0, k1, k2, k3;     // words used for first part of key expansion 
input       [31:0]  k4, k5, k6, k7;     // words used for second part of key expansion 
output reg  [31:0]  rnd_key;            // round key for add round key operation 
 
 
// ---------- MODULE IMPLEMENTATION ---------- 
 
always @ (posedge clk or negedge reset_n) 
  begin: ROUND_KEY 
   
    if (!reset_n) rnd_key <= 32'h0;     // reset round_key register 
     
    else 
        case (step)  
                                        // w0 for Mix_0 in round 0 (key_in[255:224]) 
          0:  rnd_key <= (rnd_cnt == 0) ? key_in: 
                                        // for Mix_0 in 2,4...14 : 1,3...13 
                         (rnd_cnt[0] == 0) ? k0 : k4; 
                                        // for Mix_1 in 2,4...14 : 1,3...13 
          1:  rnd_key <= (rnd_cnt[0] == 0) ? k1 : k5; 
                                        // for Mix_2 in 2,4...14 : 1,3...13 
          2:  rnd_key <= (rnd_cnt[0] == 0) ? k2 : k6; 
                                        // for Mix_3 in 2,4...14 : 1,3...13 
          3:  rnd_key <= (rnd_cnt[0] == 0) ? k3 : k7; 
           
        endcase 
 
  end 
 
 
endmodule 
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C.6 MixColumns Module 

`timescale 1ns / 1ps 
 
// ---------- MIX COLUMNS ---------- 
 
module mix_columns ( 
                    clk, 
                    reset_n, 
                    rnd_cnt, 
                    step, 
                    data_in, 
                    block_1, 
                    block_2, 
                    sub_out, 
                    rnd_key, 
                    mix_out             // output 
                    ); 
 
 
// ---------- MODULE INTERFACE ---------- 
 
input               clk;                // global clock 
input               reset_n;            // global negative edge reset 
input       [3:0]   rnd_cnt;            // round counter [0 to 14] 
input       [2:0]   step;               // step counter [0 to 4] 
input       [127:0] data_in;            // 128-bit plaintext 
input       [127:0] block_1, block_2;   // storage blocks for shift rows operation 
input       [31:0]  sub_out;            // processed column after sub bytes operation 
input       [31:0]  rnd_key;            // round key for add round key operation 
output wire [31:0]  mix_out;            // processed column after mix operation 
 
 
// ---------- MODULE REGISTERS AND SIGNALS ---------- 
 
reg     [3:0]       rnd_cnt_mix;        // round counter used as input for mix column unit 
reg     [31:0]      mix_in;             // column as input for mix operation 
 
 
// ---------- MODULE IMPLEMENTATION ---------- 
 
always @ (posedge clk or negedge reset_n) 
  begin: MIX_COLUMNS 
   
    if (!reset_n) 
      begin 
        mix_in <= 32'b0;      // reset of mix_in register 
        rnd_cnt_mix <= 4'b0; 
      end 
     
    else 
      begin 
        rnd_cnt_mix <= rnd_cnt;         // syncrhonize to use correct round counter along with mix_in 
        case (step) 
          0:  begin                     // Mix_0 
                mix_in <= (rnd_cnt == 0) ? data_in[127:96]:                         // round 0 
                          (rnd_cnt[0] != 1'b0) ? {block_1[127:104],sub_out[7:0]}:   // rounds 1,3...13 
                                                 {block_2[127:104],sub_out[7:0]};   // rounds 2,4...14 
              end                       // sub_out[7:0] is the last elemtent for first column 
                                        // already considering shift rows after sub bytes 
 
          1:  begin                     // Mix_1 
                mix_in <= (rnd_cnt == 0) ? data_in[95:64]:          // round 0 
                          (rnd_cnt[0] != 1'b0) ? block_1[95:64]:    // rounds 1,3...13 
                                                 block_2[95:64];    // rounds 2,4...14 
              end             
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          2:  begin                     // Mix_2 
                mix_in <= (rnd_cnt == 0) ? data_in[63:32]:          // round 0 
                          (rnd_cnt[0] != 1'b0) ? block_1[63:32]:    // rounds 1,3...13 
                                                 block_2[63:32];    // rounds 2,4...14 
              end 
               
          3:  begin                     // Mix_3 
                mix_in <= (rnd_cnt == 0) ? data_in[31:0]:           // round 0 
                          (rnd_cnt[0] != 1'b0) ? block_1[31:0]:     // rounds 1,3...13 
                                                 block_2[31:0];     // rounds 2,4...14 
              end 
               
           
        endcase 
      end     
  end 
 
 
// ---------- MIX OPERATION BY WORD UNIT ---------- 
 
mix_w       mix_w_u    ( 
                        .round      (rnd_cnt_mix),      // round counter as condition to mix column 
operation 
                        .round_key  (rnd_key),          // round key for add round key operation 
                        .in         (mix_in),           // column as input for mix operation 
                        .out        (mix_out)           // processed column after mix operation 
                        ); 
 
 
endmodule  
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C.7 Mix Word Module 

  
// ---------- MIX COLUMNS FOR ENC WORD ---------- 
 
module mix_w    ( round, round_key, in, out ); 
 
 
// ---------- MODULE INTERFACE ---------- 
 
input       [3:0]   round; 
input       [31:0]  round_key; 
input       [31:0]  in; 
output      [31:0]  out; 
 
 
// ---------- MODULE REGISTERS AND SIGNALS ---------- 
 
wire    [7:0]       byte0_in, byte1_in, byte2_in, byte3_in; 
wire    [7:0]       byte0_out, byte1_out, byte2_out, byte3_out; 
 
 
// ---------- MODULE IMPLEMENTATION ---------- 
 
assign byte0_in[7:0] = in[31:24]; 
assign byte1_in[7:0] = in[23:16]; 
assign byte2_in[7:0] = in[15:8]; 
assign byte3_in[7:0] = in[7:0]; 
 
assign out = (round == 0 || round == 14) ? in ^ round_key : {byte0_out, byte1_out, byte2_out, 
byte3_out} ^ round_key; 
 
 
// ---------- MODULES INSTANTIATION ---------- 
 
byte_mix byte_mix0_u (.a(byte0_in), .b(byte1_in), .c(byte2_in), .d(byte3_in), .out(byte0_out)); 
 
byte_mix byte_mix1_u (.a(byte1_in), .b(byte2_in), .c(byte3_in), .d(byte0_in), .out(byte1_out)); 
 
byte_mix byte_mix2_u (.a(byte2_in), .b(byte3_in), .c(byte0_in), .d(byte1_in), .out(byte2_out)); 
 
byte_mix byte_mix3_u (.a(byte3_in), .b(byte0_in), .c(byte1_in), .d(byte2_in), .out(byte3_out)); 
 
 
endmodule  
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C.8 ByteMix Module 

// ---------- BYTE MIX COLUMNS ---------- 
 
module byte_mix (   a, b, c, d, out ); 
 
 
// ---------- MODULE INTERFACE ---------- 
 
input       [7:0]   a, b, c, d; 
output      [7:0]   out; 
 
 
// ---------- MODULE REGISTERS AND SIGNALS ---------- 
 
wire [7:0] mul2, mul3; 
 
 
// ---------- MODULE IMPLEMENTATION ---------- 
 
assign out = mul2 ^ mul3 ^ c ^ d; 
 
 
// ---------- MODULES INSTANTIATION ---------- 
 
xtimes      xt_u       (    .in(a), .out(mul2)  ); 
                         
MUL3        mul3_u     (    .in(b), .out(mul3)  ); 
 
 
endmodule  

 

C.9 Multiply by 3 Module 

// ---------- MULTIPLY BY 3 ---------- 
 
module MUL3     ( in, out ); 
 
 
// ---------- MODULE INTERFACE ---------- 
 
input       [7:0] in; 
output      [7:0] out; 
 
 
// ---------- MODULE REGISTERS AND SIGNALS ---------- 
 
wire    [7:0]       xt; 
 
 
// ---------- MODULE IMPLEMENTATION ---------- 
 
assign out = xt ^ in; 
 
 
// ---------- MODULES INSTANTIATION ---------- 
 
xtimes  xt_u    ( .in(in), .out(xt) ); 
 
 
endmodule  
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C.10 Multiply by 2 Module 

// ---------- MULTIPLY BY 2 ---------- 
 
/* 
   2 = 0010 = x ;   v = 1011 0010 = x7 + x5 + x4 + x ;   P = 'h11B = 1 0001 1011 = x8 + x4 + x3 + x + 
1 
   v*2 = v*x = (x7 + x5 + x4 + x)x = x8 + x6 + x5 + x2; 
   v*2(modP) = (x8 + x6 + x5 + x2) + (x8 + x4 + x3 + x + 1) = x6 + x5 + x4 + x3 + x2 + x + 1 = 0111 
1111 
*/ 
 
module xtimes    ( in, out ); 
 
 
// ---------- MODULE INTERFACE ---------- 
 
input       [7:0] in; 
output      [7:0] out; 
 
 
// ---------- MODULE REGISTERS AND SIGNALS ---------- 
 
wire    [3:0]       xt; 
 
 
// ---------- MODULE IMPLEMENTATION ---------- 
 
// same as: xt = in[7] ? 1101 : 0000; 
assign xt[3] = in[7]; 
assign xt[2] = in[7]; 
assign xt[1] = 1'b0; 
assign xt[0] = in[7]; 
 
// if in = 1011 0010, in * 2 (mod P)= 1 0110 0100  
//                                xor 1 0001 1011 = 011 1111 1 
// same as: {in[6:4], xt ^ in[3:0], in[7]} =        011,1111,1 
 
assign out[7:5] = in[6:4]; 
assign out[4:1] = xt[3:0] ^ in[3:0];  // 1101 ^ 0010 = 1111 
assign out[0]   = in[7]; 
 
endmodule  
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C.11 SubBytes Module 

`timescale 1ns / 1ps 
 
// ---------- SUB BYTES ---------- 
 
module sub_bytes   ( 
                    clk, 
                    reset_n, 
                    rnd_cnt, 
                    step, 
                    k3, k7_rot, 
                    mix_out, 
                    sub_out              // output 
                    ); 
 
 
// ---------- MODULE INTERFACE ---------- 
 
input               clk;                // global clock 
input               reset_n;            // global negative active reset 
input       [3:0]   rnd_cnt;            // round counter [0 to 14] 
input       [2:0]   step;               // step counter [0 to 4] 
input       [31:0]  k3, k7_rot;         // word 3 and word 7 rotated used for key expansion 
input       [31:0]  mix_out;            // processed column after mix operation 
output wire [31:0]  sub_out;            // processed column after sub bytes operation 
 
// ---------- MODULE REGISTERS AND SIGNALS ---------- 
 
reg     [31:0]      sub_in;             // column as input for S-Box 
 
 
// ---------- MODULE IMPLEMENTATION ---------- 
 
always @ (posedge clk or negedge reset_n) 
  begin: SUB_BYTES 
   
    if (!reset_n) sub_in <= 32'b0;      // reset sub_in register 
     
    else if (step == 0)                 // Key expansion in every step 0 
                                        // K2,K4...K14 : K3,K5...K13 
      sub_in <= (rnd_cnt[0] == 1) ? {k7_rot} : k3[31:0]; // rounds 1 to 13 
      //Rotate to use as input for S-Box when j mod Nk = 0, j = 8,16...56 
 
    else                                // Sub_0, Sub_1, Sub_2, Sub_3 
      sub_in <= mix_out;                // steps 1,2,3 and 4 
       
  end 
 
 
// ---------- S-BOX UNITS ---------- 
 
sbox            sbox0_u        (  
                                sub_in[31:24], 
                                sub_out[31:24] 
                                ); 
                                 
sbox            sbox1_u        ( 
                                sub_in[23:16], 
                                sub_out[23:16] 
                                ); 
                                 
sbox            sbox2_u        ( 
                                sub_in[15:8], 
                                sub_out[15:8] 
                                ); 
                                 
sbox            sbox3_u        ( 
                                sub_in[7:0], 
                                sub_out[7:0] 
                                ); 
 
endmodule  
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C.12 ShiftRows Module 

`timescale 1ns / 1ps 
 
/*           
            Initial Matrix 
    127:120 | 95:88 |  63:56  |  31:24 
    119:112 | 87:80 |  55:48  |  23:16 
    111:104 | 79:72 |  47:40  |  15:8 
    103:96  | 71:64 |  39:32  |   7:0 
     
            After Shift Rows 
    127:120 |  95:88 |  63:56  |  31:24 
     87:80  |  55:48 |  23:16  | 119:112 
     47:40  |  15:8  | 111:104 |  79:72 
      7:0   | 103:96 |  71:64  |  39:32 
     
*/ 
 
// ---------- SHIFT ROWS and OUTPUT ---------- 
 
module shift_rows  ( 
                    clk, 
                    reset_n, 
                    rnd_cnt, 
                    step, 
                    sub_out, 
                    mix_out, 
                    block_1,            // output 
                    block_2             // output 
                    ); 
 
 
// ---------- MODULE INTERFACE ---------- 
 
input               clk;                // global clock 
input               reset_n;            // global negative edge reset 
input       [3:0]   rnd_cnt;            // round counter [0 to 14] 
input       [2:0]   step;               // step counter [0 to 4] 
input       [31:0]  sub_out;            // processed column after substitution bytes operation 
input       [31:0]  mix_out;            // processed column after mix operation 
output reg  [127:0] block_1;            // storage block used after first shift rows operation and to 
store final output(data_out) 
output reg  [127:0] block_2;            // storage block used after second shift rows operation 
 
 
// ---------- MODULE IMPLEMENTATION ---------- 
 
always @ (posedge clk or negedge reset_n) 
  begin: SHIFT_ROWS 
   
    if (!reset_n)                       // reset blocks registers 
      begin 
        block_1 <= 128'b0; 
        block_2 <= 128'b0; 
      end 
       
    else 
        case (step) 
         
          0:  begin                         // Shift_3 
                if(rnd_cnt[0] != 1'b0)      // for rounds 1,3...13 
                  {block_1[31:24],block_1[55:48],block_1[79:72],block_1[103:96]} <= sub_out; 
                else                        // for rounds 2,4...14 
                  {block_2[31:24],block_2[55:48],block_2[79:72],block_2[103:96]} <= sub_out; 
              end 
                                            // data_out first column 
          1:  if(rnd_cnt == 4'd14) block_1[127:96] <= mix_out; 
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          2:  begin                      
                if(rnd_cnt == 4'd14)        // data_out second column 
                  block_1[95:64] <= mix_out; 
                else 
                  begin                     // Shift_0 
                    if(rnd_cnt[0] == 1'b0)  // for rounds 0,2...12 
                      {block_1[127:120],block_1[23:16],block_1[47:40],block_1[71:64]} <= sub_out; 
                    else                    // for rounds 1,3..13 
                      {block_2[127:120],block_2[23:16],block_2[47:40],block_2[71:64]} <= sub_out; 
                  end     
              end 
 
          3:  begin                      
                if(rnd_cnt == 4'd14)        // data_out third column 
                block_1[63:32] <= mix_out; 
                else 
                  begin                     // Shift_1 
                    if(rnd_cnt[0] == 1'b0)  // for rounds 0,2...12 
                      {block_1[95:88],block_1[119:112],block_1[15:8],block_1[39:32]} <= sub_out; 
                    else                    // for rounds 1,3..13 
                      {block_2[95:88],block_2[119:112],block_2[15:8],block_2[39:32]} <= sub_out; 
                  end 
              end 
 
          4:  begin                      
                if(rnd_cnt == 4'd0)         // data_out fourth column 
                  block_1[31:0] <= mix_out; 
                else 
                  begin                     // Shift_2 
                    if(rnd_cnt[0] == 1'b1)  // for rounds 0,2...12 
                      {block_1[63:56],block_1[87:80],block_1[111:104],block_1[7:0]} <= sub_out; 
                    else                    // for rounds 1,3..13 
                      {block_2[63:56],block_2[87:80],block_2[111:104],block_2[7:0]} <= sub_out; 
                  end                 
              end 
 
        endcase 
 
  end 
 
 
endmodule  
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C.13 S-box Module 

module sbox( 
 in, 
 out); 
input [7:0] in; 
output [7:0] out; 
  
wire [7:0] first_matrix_out,first_matrix_in,last_matrix_out_enc, last_matrix_out_dec; 
wire [3:0] p,q,p2,q2,sumpq,sump2q2,inv_sump2q2,p_new,q_new,mulpq,q2B; 
wire [7:0]  first_matrix_out_L; 
wire [3:0]  p_new_L,q_new_L; 
  
// GF(256) to GF(16) transformation 
assign first_matrix_in[7:0] = in[7:0]; 
assign first_matrix_out[7:0] = GF256_TO_GF16(first_matrix_in[7:0]); 
 
assign p[3:0] = first_matrix_out_L[3:0]; 
assign q[3:0] = first_matrix_out_L[7:4]; 
assign p2[3:0] = SQUARE(p[3:0]); 
assign q2[3:0] = SQUARE(q[3:0]); 
//p+q 
assign sumpq[3:0] = p[3:0] ^ q[3:0]; 
//p*q 
assign mulpq[3:0] = MUL(p[3:0],q[3:0]); 
//q2B calculation 
assign q2B[0]=q2[1]^q2[2]^q2[3]; 
assign q2B[1]=q2[0]^q2[1]; 
assign q2B[2]=q2[0]^q2[1]^q2[2]; 
assign q2B[3]=q2[0]^q2[1]^q2[2]^q2[3]; 
//p2+p*q+q2B 
assign sump2q2[3:0] = q2B[3:0] ^ mulpq[3:0] ^ p2[3:0]; 
// inverse p2+pq+q2B 
assign inv_sump2q2[3:0] = INVERSE(sump2q2[3:0]); 
// results 
assign p_new[3:0] = MUL(sumpq[3:0],inv_sump2q2[3:0]); 
assign q_new[3:0] = MUL(q[3:0],inv_sump2q2[3:0]); 
  
assign {p_new_L[3:0],q_new_L[3:0]} = {p_new[3:0],q_new[3:0]}; 
 
// GF(16) to GF(256) transformation 
assign last_matrix_out_dec[7:0] = GF16_TO_GF256(p_new_L[3:0],q_new_L[3:0]); 
assign last_matrix_out_enc[7:0] = AFFINE(last_matrix_out_dec[7:0]); 
assign out[7:0] = last_matrix_out_enc[7:0]; 
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/*****************************************************************************/ 
// Functions 
/*****************************************************************************/ 
  
// convert GF(256) to GF(16) 
function [7:0] GF256_TO_GF16; 
input [7:0] data; 
reg a,b,c; 
begin 
 a = data[1]^data[7]; 
 b = data[5]^data[7]; 
 c = data[4]^data[6]; 
 GF256_TO_GF16[0] = c^data[0]^data[5]; 
 GF256_TO_GF16[1] = data[1]^data[2]; 
 GF256_TO_GF16[2] = a; 
 GF256_TO_GF16[3] = data[2]^data[4]; 
 GF256_TO_GF16[4] = c^data[5];  
 GF256_TO_GF16[5] = a^c; 
 GF256_TO_GF16[6] = b^data[2]^data[3]; 
 GF256_TO_GF16[7] = b; 
end 
endfunction 
  
// squre  
function [3:0] SQUARE; 
input [3:0] data; 
begin 
 SQUARE[0] = data[0]^data[2]; 
 SQUARE[1] = data[2]; 
 SQUARE[2] = data[1]^data[3]; 
 SQUARE[3] = data[3]; 
end 
endfunction 
  
// inverse 
function [3:0] INVERSE; 
input [3:0] data; 
reg a; 
begin 
 a=data[1]^data[2]^data[3]^(data[1]&data[2]&data[3]); 
 INVERSE[0]=a^data[0]^(data[0]&data[2])^(data[1]&data[2])^(data[0]&data[1]&data[2]); 
 INVERSE[1]=(data[0]&data[1])^(data[0]&data[2])^(data[1]&data[2])^data[3]^ 
  (data[1]&data[3])^(data[0]&data[1]&data[3]); 
 INVERSE[2]=(data[0]&data[1])^data[2]^(data[0]&data[2])^data[3]^ 
  (data[0]&data[3])^(data[0]&data[2]&data[3]); 
 INVERSE[3]=a^(data[0]&data[3])^(data[1]&data[3])^(data[2]&data[3]); 
end 
endfunction 
  
// multiply 
function [3:0] MUL; 
input [3:0] d1,d2; 
reg a,b; 
begin 
 a=d1[0]^d1[3]; 
 b=d1[2]^d1[3]; 
  
 MUL[0]=(d1[0]&d2[0])^(d1[3]&d2[1])^(d1[2]&d2[2])^(d1[1]&d2[3]); 
 MUL[1]=(d1[1]&d2[0])^(a&d2[1])^(b&d2[2])^((d1[1]^d1[2])&d2[3]); 
 MUL[2]=(d1[2]&d2[0])^(d1[1]&d2[1])^(a&d2[2])^(b&d2[3]); 
 MUL[3]=(d1[3]&d2[0])^(d1[2]&d2[1])^(d1[1]&d2[2])^(a&d2[3]); 
end 
endfunction 
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// GF16 to GF256 transform 
function [7:0] GF16_TO_GF256; 
input [3:0] p,q; 
reg a,b; 
begin 
 a=p[1]^q[3]; 
 b=q[0]^q[1]; 
  
 GF16_TO_GF256[0]=p[0]^q[0]; 
 GF16_TO_GF256[1]=b^q[3]; 
 GF16_TO_GF256[2]=a^b; 
 GF16_TO_GF256[3]=b^p[1]^q[2]; 
 GF16_TO_GF256[4]=a^b^p[3]; 
 GF16_TO_GF256[5]=b^p[2]; 
 GF16_TO_GF256[6]=a^p[2]^p[3]^q[0]; 
 GF16_TO_GF256[7]=b^p[2]^q[3]; 
end 
endfunction 
  
// affine transformation 
function [7:0] AFFINE; 
input [7:0] data; 
begin 
 //affine trasformation 
 AFFINE[0]=(!data[0])^data[4]^data[5]^data[6]^data[7]; 
 AFFINE[1]=(!data[0])^data[1]^data[5]^data[6]^data[7]; 
 AFFINE[2]=data[0]^data[1]^data[2]^data[6]^data[7]; 
 AFFINE[3]=data[0]^data[1]^data[2]^data[3]^data[7]; 
 AFFINE[4]=data[0]^data[1]^data[2]^data[3]^data[4]; 
 AFFINE[5]=(!data[1])^data[2]^data[3]^data[4]^data[5]; 
 AFFINE[6]=(!data[2])^data[3]^data[4]^data[5]^data[6]; 
 AFFINE[7]=data[3]^data[4]^data[5]^data[6]^data[7]; 
end 
endfunction 
  
// inverse affine transformation 
function [7:0] INV_AFFINE; 
input [7:0] data; 
reg a,b,c,d; 
begin 
 a=data[0]^data[5]; 
 b=data[1]^data[4]; 
 c=data[2]^data[7]; 
 d=data[3]^data[6]; 
 INV_AFFINE[0]=(!data[5])^c; 
 INV_AFFINE[1]=data[0]^d; 
 INV_AFFINE[2]=(!data[7])^b; 
 INV_AFFINE[3]=data[2]^a; 
 INV_AFFINE[4]=data[1]^d; 
 INV_AFFINE[5]=data[4]^c; 
 INV_AFFINE[6]=data[3]^a; 
 INV_AFFINE[7]=data[6]^b; 
end 
endfunction 
endmodule 
 
// based on https://github.com/freecores/aes_highthroughput_lowarea/blob/master/verilog/rtl/sbox.v   
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Appendix D - AES-256 code for decryption 

D.1 Top Module 

`timescale 1ns / 1ps 
 
// ---------- ADVANCED ENCRYPTION STANDARD --- AES-256 --- DECRYPTION ---------- 
 
module aes256_dec  ( 
                    clk, 
                    reset_n, 
                    start, 
                    key_in, 
                    data_in, 
                    data_out, 
                    ready 
                    ); 
 
     
// ---------- MODULE INTERFACE ---------- 
 
input               clk;                // global clock 
input               reset_n;            // global async negative edge reset 
input               start;              // start pulse 
input       [255:0] key_in;             // 256-bit key 
input       [127:0] data_in;            // 128-bit block size of ciphertext 
output wire [127:0] data_out;           // 128-bit plaintext and also as storage block 
output wire         ready;              // output ready 
 
 
// ---------- MODULE REGISTERS AND SIGNALS ---------- 
 
wire    [3:0]       rnd_cnt;            // round counter [0 to 14] 
wire    [2:0]       step;               // step counter [0 to 4] 
wire    [31:0]      mix_out;            // processed column after inv mix operation 
wire    [31:0]      sub_out;            // processed column after inv substitution bytes operation 
wire    [3:0]     key_exp_rnd;        // round for key expansion 
wire    [127:0]     block_2;            // storage block for inv shift rows operation 
wire    [31:0]      rnd_key;            // round key for add round key operation 
wire    [31:0]      k3_next,k7_next_rot;// word 3 and word 7 used for key expansion 
wire      key_ready;          // key is expanded 
 
 
// ---------- MODULES INSTANTIATION ---------- 
 
// ---------- ROUND AND STEP COUNTERS ---------- 
 
counters_dec    counters_dec_u ( 
                                clk, 
                                reset_n, 
                                start, 
    key_ready, 
                                rnd_cnt,    // output 
                                step,       // output 
                                ready       // output 
                                ); 
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// ---------- INV MIX COLUMNS UNIT ---------- 
 
inv_mix_columns inv_mix_columns_u( 
                                clk, 
                                reset_n, 
                                rnd_cnt, 
                                step, 
                                data_in, 
                                data_out, 
                                block_2, 
                                sub_out, 
                                rnd_key, 
                                mix_out     // output 
                                ); 
 
// ---------- INV SUB BYTES UNIT ---------- 
 
inv_sub_bytes   inv_sub_bytes_u( 
                                clk, 
                                reset_n, 
                                key_exp_rnd, 
                                step, 
                                k3_next,k7_next_rot, 
                                mix_out, 
                                sub_out      // output 
                                ); 
 
// ---------- INV SHIFT ROWS UNIT ---------- 
 
inv_shift_rows  inv_shift_rows_u( 
                                clk, 
                                reset_n, 
                                rnd_cnt, 
                                step, 
                                sub_out, 
                                mix_out, 
                                data_out,   // output 
                                block_2     // output 
                                ); 
                               
// ---------- KEY EXPANSION UNIT ---------- 
 
key_exp_dec     key_exp_dec_u  ( 
                                clk, 
                                reset_n, 
    rnd_cnt, 
                                step, 
                                key_in, 
                                sub_out, 
    key_exp_rnd,// output 
                                k3_next,k7_next_rot, // output 
    key_ready,  // output 
                                rnd_key     // output 
                                ); 
 
 
endmodule 
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D.2 Counters Module 

`timescale 1ns / 1ps 
 
// ---------- ROUND AND STEP COUNTERS for DEC ---------- 
 
module counters_dec ( 
                    clk, 
                    reset_n, 
                    start, 
      key_ready, 
                    rnd_cnt,            // output 
                    step,               // output 
                    ready               // output 
                    ); 
 
 
// ---------- MODULE INTERFACE ---------- 
 
input               clk;                // global clock 
input               reset_n;            // global negative edge reset 
input               start;              // start decryption 
input      key_ready;  // key is expanded 
output reg  [3:0]   rnd_cnt;            // round counter [0 to 14] 
output reg  [2:0]   step;               // step counter [0 to 4] 
output reg          ready;              // deccryption done 
 
 
// ---------- MODULE REGISTERS AND SIGNALS ---------- 
 
parameter           max_rnd = 4'd14;    // AES-256 requires 14 rounds (plus round 0) 
parameter           max_steps = 4'd4;   // every round consists on 5 steps (0 to 4) 
 
reg [3:0]           current_state, next_state; 
parameter           IDLE = 4'd6, 
      K_EXP = 4'd7, 
      K_DONE = 4'd8, 
                    S0 = 4'd0, 
                    S1 = 4'd1, 
                    S2 = 4'd2, 
                    S3 = 4'd3, 
                    S4 = 4'd4, 
                    DONE = 4'd5; 
 
 
// ---------- STATE MACHINE ---------- 
 
always @ (posedge clk or negedge reset_n) 
  begin: STATE_MEMORY_DEC 
   
    if (!reset_n)   current_state <= IDLE; 
    else            current_state <= next_state; 
     
  end 
 
 
always @ (current_state or start or key_ready or ready) 
  begin: NEXT_STATE_LOGIC_DEC 
   
    case (current_state) 
      IDLE :    next_state = (start) ? K_EXP : IDLE;// start step counter with start 
      K_EXP : next_state = (key_ready) ? K_DONE : K_EXP; //to K_DONE when key is expanded 
      K_DONE : next_state = S1; 
      S0 :      next_state = (ready) ? DONE : S1;   // to DONE if ready, else continue encryption 
      S1 :      next_state = S2; 
      S2 :      next_state = S3; 
      S3 :      next_state = S4; 
      S4 :      next_state = S0;                    // resets after step = 4 
      DONE:     next_state = (start) ? K_EXP : DONE;   // it can start from DONE state*/ 
      default : next_state = IDLE; 
    endcase 
     
  end  
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always @ (current_state or rnd_cnt) 
  begin: OUTPUT_LOGIC_DEC 
   
    case (current_state) 
      IDLE :  begin   
                step = 3'd0; 
                ready = 1'b0; 
              end 
 
      K_EXP : begin   
                step = 3'd5; 
                ready = 1'b0; 
              end 
 
      K_DONE :begin   
                step = 3'd0; 
                ready = 1'b0; 
              end 
               
      S0 :    begin 
                step = 3'd0; 
                if (rnd_cnt == 0) ready = 1'b1;   // when round counter finishes and step = 0 
                else                 ready = 1'b0; 
              end 
 
      S1 :    begin 
                step = 3'd1; 
                ready = 1'b0; 
              end 
       
      S2 :    begin 
                step = 3'd2; 
                ready = 1'b0; 
              end 
       
      S3 :    begin 
                step = 3'd3; 
                ready = 1'b0; 
              end 
       
      S4 :    begin 
                step = 3'd4; 
                ready = 1'b0; 
              end 
                
      DONE :  begin   
                step = 3'd0; 
                ready = 1'b1;       // Decryption DONE 
              end 
               
      default : begin   
                  step = 3'd0; 
                  ready = 1'b0; 
                end 
    endcase 
     
  end 
 
always @ (posedge clk or negedge reset_n) 
  begin: ROUND_COUNTER_DEC 
   
    if (!reset_n) 
      begin 
        rnd_cnt <= 4'b0;                            // reset of round counter 
      end 
    else 
      if(current_state == S3)                       // round counter only when step = 3 
        if (rnd_cnt == max_rnd) rnd_cnt <= 4'b0;    // reset when round = 14 
        else                    rnd_cnt <= rnd_cnt + 1; 
 
  end 
 
 
endmodule  
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D.3 Key Expansion Dec Module 

`timescale 1ns / 1ps 
 
// ---------- KEY EXPANSION DEC ---------- 
 
module key_exp_dec ( 
                    clk, 
                    reset_n, 
                    rnd_cnt, 
      step, 
                    key_in, 
                    sub_out, 
      key_exp_rnd, // output 
                    k3_next,k7_next_rot,// output 
      key_ready,  // output 
                    rnd_key  // output 
                    ); 
 
 
// ---------- MODULE INTERFACE ---------- 
 
input               clk;                // global clock 
input               reset_n;            // global negative edge reset 
input       [3:0]   rnd_cnt;            // round counter [0 to 14] 
input       [2:0]   step;               // step counter [0 to 4] 
input       [255:0] key_in;             // 256-bit key 
input       [31:0]  sub_out;            // processed column after inv substitution bytes operation 
output reg  [3:0]   key_exp_rnd;        // round for key expansion 
output reg  [31:0]  k3_next,k7_next_rot;// word 3 and word 7 rotated used for key expansion 
output reg     key_ready;  // key is expanded 
output wire [31:0]  rnd_key;            // round key for add round key operation 
 
 
// ---------- MODULE REGISTERS AND SIGNALS ---------- 
 
reg     [31:0]      k0_next, k1_next, k2_next;  // words used for first part of key expansion 
reg     [31:0]      k4_next, k5_next, k6_next, k7_next; // words used for second part of key 
expansion 
reg     [31:0]      k0, k1, k2, k3;          // words used for first part of key expansion 
reg     [31:0]      k4, k5, k6, k7;          // words used for second part of key expansion 
reg          state;  // 2 state reg, key expansion is done in 2 cycle clocks 
wire    [31:0]      RC;                 // round constant for key expansion 
 
 
 
// ---------- MODULE IMPLEMENTATION ---------- 
 
always @ (posedge clk or negedge reset_n) 
  begin: KEY_EXPANSION_DEC 
 
    if (!reset_n)                       // reset words registers 
      begin 
 key_ready <= 1'b0; 
 key_exp_rnd <= 4'b0; 
 state <= 1'b0; 
        k0 <= 31'b0; 
        k1 <= 31'b0; 
        k2 <= 31'b0; 
        k3 <= 31'b0; 
        k4 <= 31'b0; 
        k5 <= 31'b0; 
        k6 <= 31'b0; 
        k7 <= 31'b0; 
        k0_next <= 31'b0; 
        k1_next <= 31'b0; 
        k2_next <= 31'b0; 
        k3_next <= 31'b0; 
        k4_next <= 31'b0; 
        k5_next <= 31'b0; 
        k6_next <= 31'b0; 
 k7_next <= 31'b0; 
        k7_next_rot <= 31'b0; 
      end  



Appendix 

Master Thesis - Saul García Rodríguez  lix 

    else if (step == 5)   
      begin  // EXPAND KEY 
 
 if (state == 0) 
   begin 
 
     if (key_exp_rnd == 0) 
       //{k0,k1,k2,k3,k4,k5,k6,{k7_rot[7:0],k7_rot[31:8]}} <= key_in; 
       {k0,k1,k2,k3,k4,k5,k6,k7} <= key_in; 
 
   // 2,4...14 
     if (key_exp_rnd[0] == 0 && key_exp_rnd > 1) 
              begin 
                k0 <= k0_next; // update key columns for first part 
                k1 <= k1_next; 
                k2 <= k2_next; 
                k3 <= k3_next; 
              end  
   // 3,5...13 
            if (key_exp_rnd[0] == 1 && key_exp_rnd > 2) 
              begin 
                k4 <= k4_next; // update key columns for second part 
                k5 <= k5_next; 
                k6 <= k6_next; 
  k7 <= k7_next; 
              end 
 
     key_exp_rnd <= key_exp_rnd + 1; 
 
   end 
 
 else 
   begin   
                     // First Part: when j mod Nk = 0, (j = 8,16...56) 
            k0_next = k0 ^ sub_out ^ RC; // sub_out comes from k7_next_rot 
            k1_next = k0_next ^ k1; 
            k2_next = k1_next ^ k2; 
            k3_next = k2_next ^ k3; 
 
                     // Second Part: when j mod Nk = 4, (j = 12,20...52) 
            k4_next = sub_out ^ k4;  // sub_out from k3_next 
            k5_next = k4_next ^ k5; 
            k6_next = k5_next ^ k6; 
            k7_next = k6_next ^ k7; 
     k7_next_rot = (key_exp_rnd < 2) ? {k7[23:0],k7[31:24]} : {k7_next[23:0],k7_next[31:24]}; 
 
     if (key_exp_rnd == 15) 
              key_ready <= 1'b1; 
 
   end 
 
   state <= ~state; 
 
 end 
 
    else 
      begin 
 key_ready <= 1'b0; 
 key_exp_rnd <= 4'b0; 
      end 
 
  end  
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// ---------- MODULES INSTANTIATION ---------- 
 
// ---------- ROUND CONSTANT UNIT ---------- 
 
round_constant_dec round_constant_dec_u ( 
                                    clk, 
                                    reset_n, 
                                    key_exp_rnd, 
        state, 
                                    RC          // output 
                                    ); 
 
// ---------- ROUND KEY UNIT --------- 
 
round_key_dec round_key_dec_u    ( 
                                    clk, 
                                    reset_n, 
                                    rnd_cnt, 
                                    step, 
        key_exp_rnd - 4'b1, // key_exp_rnd calculating already next key 
                                    k0,k1,k2,k3, 
                                    k4,k5,k6,k7, 
                                    rnd_key     // output 
                                    ); 
                                     
endmodule  
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D.4 Round Constant Dec Module 

`timescale 1ns / 1ps 
 
/* 
            Round Constant 
 for round  2   4   6   8  10  12  14 
 -------------------------------------- 
    i       1   2   3   4   5   6   7 
 -------------------------------------- 
    RC[i]  01  02  04  08  10  20  40   
 
*/ 
 
// ---------- ROUND CONSTANT DEC ---------- 
 
module round_constant_dec ( 
                        clk, 
                        reset_n, 
                        key_exp_rnd, 
   state, 
                        RC  // output 
                        ); 
 
 
// ---------- MODULE INTERFACE ---------- 
 
input               clk;                // global clock 
input               reset_n;            // global negative edge reset    
input       [3:0]   key_exp_rnd;        // round for key expansion 
input      state;  // 2 state reg, key expansion is done in 2 cycle clocks 
output reg  [31:0]  RC;                 // round constant for key expansion 
 
 
// ---------- MODULE IMPLEMENTATION ---------- 
 
always @ (posedge clk or negedge reset_n) 
  begin: ROUND_CONSTANT_DEC 
   
    if (!reset_n) RC <= 32'h0;          // reset RC register 
                                        // in rounds 1,3...13 and in 2nd cycle for rounds 2,4...14 
    else if (key_exp_rnd[0] != 0 && state) 
                                        // RC[i] = RC[i-1] << 1 
        RC <= (key_exp_rnd == 1) ? 32'h01000000 : {RC[30:0],1'b0}; 
         
  end 
 
 
endmodule  
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D.5 Round Key Dec Module 

`timescale 1ns / 1ps 
 
// ---------- ROUND KEY DEC ---------- 
 
module round_key_dec ( 
                    clk, 
                    reset_n, 
                    rnd_cnt, 
                    step, 
      key_exp_rnd, 
                    k0,k1,k2,k3, 
                    k4,k5,k6,k7, 
                    rnd_key             // output 
                    ); 
 
 
// ---------- MODULE INTERFACE ---------- 
 
input               clk;                // global clock 
input               reset_n;            // global negative edge reset 
input       [3:0]   rnd_cnt;            // round counter [0 to 14] for decryption 
input       [2:0]   step;               // step counter [0 to 4] 
input       [3:0]   key_exp_rnd; // round for key expansion 
input       [31:0]  k0, k1, k2, k3;     // words used for first part of key expansion 
input       [31:0]  k4, k5, k6, k7;     // words used for second part of key expansion 
output reg  [31:0]  rnd_key;            // round key for add round key operation 
 
 
// ---------- MODULE REGISTERS AND SIGNALS ---------- 
 
parameter           max_rnd = 4'd14;    // AES-256 requires 14 rounds (plus round 0) 
reg     [63:0]     key_mem0 [14:0]; // array for round keys for k0, k1, k4, k5 
reg     [63:0]     key_mem1 [14:0]; // array for round keys for k2, k3, k6, k7 
 
 
// ---------- MODULE IMPLEMENTATION ---------- 
 
always @ (posedge clk or negedge reset_n) 
  begin: GET_ROUND_KEY 
   
    if (!reset_n) 
 rnd_key <= 32'h0;     // reset round_key register 
     
    else 
        case (step) 
                                // k0 or k4 for Inv_Mix_0 
          0:  rnd_key <= key_mem0[max_rnd - rnd_cnt][63:32]; 
                                        // k1 or k5 for Inv_Mix_1 
          1:  rnd_key <= key_mem0[max_rnd - rnd_cnt][31:0]; 
                                        // k2 or k6 for Inv_Mix_2 
          2:  rnd_key <= key_mem1[max_rnd - rnd_cnt][63:32]; 
                                        // k3 or k7 for Inv_Mix_3 
          3:  rnd_key <= key_mem1[max_rnd - rnd_cnt][31:0]; 
           
        endcase 
 
  end 
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always @ (posedge clk or negedge reset_n) 
  begin: SET_ROUND_KEY 
   
    if (!reset_n) 
      begin 
 key_mem0[0] <= 64'b0;  // reset round_key register 
 key_mem0[1] <= 64'b0; 
 key_mem0[2] <= 64'b0; 
 key_mem0[3] <= 64'b0; 
 key_mem0[4] <= 64'b0; 
 key_mem0[5] <= 64'b0; 
 key_mem0[6] <= 64'b0; 
 key_mem0[7] <= 64'b0; 
 key_mem0[8] <= 64'b0; 
 key_mem0[9] <= 64'b0; 
 key_mem0[10] <= 64'b0; 
 key_mem0[11] <= 64'b0; 
 key_mem0[12] <= 64'b0; 
 key_mem0[13] <= 64'b0; 
 key_mem0[14] <= 64'b0; 
 key_mem1[0] <= 64'b0; 
 key_mem1[1] <= 64'b0; 
 key_mem1[2] <= 64'b0; 
 key_mem1[3] <= 64'b0; 
 key_mem1[4] <= 64'b0; 
 key_mem1[5] <= 64'b0; 
 key_mem1[6] <= 64'b0; 
 key_mem1[7] <= 64'b0; 
 key_mem1[8] <= 64'b0; 
 key_mem1[9] <= 64'b0; 
 key_mem1[10] <= 64'b0; 
 key_mem1[11] <= 64'b0; 
 key_mem1[12] <= 64'b0; 
 key_mem1[13] <= 64'b0; 
 key_mem1[14] <= 64'b0; 
      end 
     
    else if (step == 3'd5) 
    begin 
        key_mem0[key_exp_rnd][63:0] <= (key_exp_rnd[0] == 0) ? {k0,k1} : {k4,k5}; 
      key_mem1[key_exp_rnd][63:0] <= (key_exp_rnd[0] == 0) ? {k2,k3} : {k6,k7}; 
    end 
 
  end 
   
   
 
endmodule 
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D.6 Inv Mix Columns Module 

`timescale 1ns / 1ps 
 
// ---------- MIX COLUMNS ---------- 
 
module inv_mix_columns ( 
                     clk, 
                     reset_n, 
                     rnd_cnt, 
                     step, 
                     data_in, 
                     block_1, 
                     block_2, 
                     sub_out, 
                     rnd_key, 
                     mix_out  // output 
                     ); 
 
 
// ---------- MODULE INTERFACE ---------- 
 
input               clk;                // global clock 
input               reset_n;            // global negative edge reset 
input       [3:0]   rnd_cnt;            // round counter [0 to 14] 
input       [2:0]   step;               // step counter [0 to 4] 
input       [127:0] data_in;            // 128-bit ciphertext 
input       [127:0] block_1, block_2;   // storage blocks for inv shift rows operation 
input       [31:0]  sub_out;            // processed column after inv sub bytes operation 
input       [31:0]  rnd_key;            // round key for add round key operation 
output wire [31:0]  mix_out;            // processed column after inv mix operation 
 
 
// ---------- MODULE REGISTERS AND SIGNALS ---------- 
 
reg     [3:0]       rnd_cnt_mix;        // round counter used as input for inv mix column unit 
reg     [31:0]      mix_in;             // column as input for inv mix operation 
 
 
// ---------- MODULE IMPLEMENTATION ---------- 
 
always @ (posedge clk or negedge reset_n) 
  begin: INV_MIX_COLUMNS 
   
    if (!reset_n) 
      begin 
        mix_in <= 32'b0;      // reset of mix_in register 
        rnd_cnt_mix <= 4'b0; 
      end 
     
    else 
      begin 
        rnd_cnt_mix <= rnd_cnt;         // syncrhonize to use correct round counter along with mix_in 
        case (step) 
          0:  begin                     // Inv_Mix_0 
                mix_in <= (rnd_cnt == 0) ? data_in[127:96]:                         // round 0 
                          (rnd_cnt[0] != 1'b0) ? {block_1[127:120],sub_out[23:16],block_1[111:96]}:   
// rounds 1,3...13 
                                                 {block_2[127:120],sub_out[23:16],block_2[111:96]};   
// rounds 2,4...14 
              end                       // sub_out[23:16] is the last elemtent for first column 
                                        // already considering inv shift rows after inv sub bytes 
 
          1:  begin                     // Inv_Mix_1 
                mix_in <= (rnd_cnt == 0) ? data_in[95:64]:          // round 0 
                          (rnd_cnt[0] != 1'b0) ? block_1[95:64]:    // rounds 1,3...13 
                                                 block_2[95:64];    // rounds 2,4...14 
              end             
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          2:  begin                     // Inv_Mix_2 
                mix_in <= (rnd_cnt == 0) ? data_in[63:32]:          // round 0 
                          (rnd_cnt[0] != 1'b0) ? block_1[63:32]:    // rounds 1,3...13 
                                                 block_2[63:32];    // rounds 2,4...14 
              end 
               
          3:  begin                     // Inv_Mix_3 
                mix_in <= (rnd_cnt == 0) ? data_in[31:0]:           // round 0 
                          (rnd_cnt[0] != 1'b0) ? block_1[31:0]:     // rounds 1,3...13 
                                                 block_2[31:0];     // rounds 2,4...14 
              end 
               
           
        endcase 
      end     
  end 
 
 
// ---------- INV MIX OPERATION BY WORD UNIT ---------- 
 
inv_mix_w   inv_mix_w_u ( 
                        .round      (rnd_cnt_mix),      // round counter as condition to inv mix 
column operation 
                        .round_key  (rnd_key),          // round key for add round key operation 
                        .in         (mix_in),           // column as input for inv mix operation 
                        .out        (mix_out)           // processed column after inv mix operation 
                        ); 
 
 
endmodule 
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D.7 Inv Mix Word Module 

 
// ---------- MIX COLUMNS FOR DEC WORD ---------- 
 
module inv_mix_w    ( round, round_key, in, out ); 
 
 
// ---------- MODULE INTERFACE ---------- 
 
input       [3:0]   round; 
input       [31:0]  round_key; 
input       [31:0]  in; 
output      [31:0]  out; 
 
 
// ---------- MODULE REGISTERS AND SIGNALS ---------- 
 
wire    [7:0]       byte0_in, byte1_in, byte2_in, byte3_in; 
wire    [7:0]       byte0_out, byte1_out, byte2_out, byte3_out; 
 
 
// ---------- MODULE IMPLEMENTATION ---------- 
 
assign byte0_in[7:0] = in[31:24] ^ round_key[31:24]; 
assign byte1_in[7:0] = in[23:16] ^ round_key[23:16]; 
assign byte2_in[7:0] = in[15:8] ^ round_key[15:8]; 
assign byte3_in[7:0] = in[7:0] ^ round_key[7:0]; 
 
assign out = (round == 0 || round == 14) ? in ^ round_key : {byte0_out, byte1_out, byte2_out, 
byte3_out}; 
 
 
// ---------- MODULES INSTANTIATION ---------- 
 
inv_byte_mix inv_byte_mix0_u (.a(byte0_in), .b(byte1_in), .c(byte2_in), .d(byte3_in), 
.out(byte0_out)); 
 
inv_byte_mix inv_byte_mix1_u (.a(byte1_in), .b(byte2_in), .c(byte3_in), .d(byte0_in), 
.out(byte1_out)); 
 
inv_byte_mix inv_byte_mix2_u (.a(byte2_in), .b(byte3_in), .c(byte0_in), .d(byte1_in), 
.out(byte2_out)); 
 
inv_byte_mix inv_byte_mix3_u (.a(byte3_in), .b(byte0_in), .c(byte1_in), .d(byte2_in), 
.out(byte3_out)); 
 
 
endmodule  
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D.8 Inv ByteMix Module 

// ---------- INV BYTE MIX COLUMNS ---------- 
 
module inv_byte_mix (   a, b, c, d, out ); 
 
 
// ---------- MODULE INTERFACE ---------- 
 
input       [7:0]   a, b, c, d; 
output      [7:0]   out; 
 
 
// ---------- MODULE REGISTERS AND SIGNALS ---------- 
 
wire [7:0] mule, mulb, muld, mul9; 
 
 
// ---------- MODULE IMPLEMENTATION ---------- 
 
assign out = mule ^ mulb ^ muld ^ mul9; 
 
 
// ---------- MODULES INSTANTIATION ---------- 
                         
MULE        mule_u     (    .in(a), .out(mule)  ); 
 
MULB        mulb_u     (    .in(b), .out(mulb)  ); 
 
MULD        muld_u     (    .in(c), .out(muld)  ); 
 
MUL9        mul9_u     (    .in(d), .out(mul9)  ); 
 
 
endmodule 

  

D.9 Multiply by 9 Module 

// ---------- MULTIPLY BY 9 ---------- 
 
module MUL9     ( in, out ); 
 
 
// ---------- MODULE INTERFACE ---------- 
 
input       [7:0] in; 
output      [7:0] out; 
 
 
// ---------- MODULE REGISTERS AND SIGNALS ---------- 
 
wire    [7:0]       xt1, xt2, xt3; 
 
 
// ---------- MODULE IMPLEMENTATION ---------- 
 
assign out = xt3 ^ in; 
 
 
// ---------- MODULES INSTANTIATION ---------- 
 
xtimes  xt_u1   ( .in(in), .out(xt1) ); 
xtimes  xt_u2   ( .in(xt1), .out(xt2) ); 
xtimes  xt_u3   ( .in(xt2), .out(xt3) ); 
 
 
endmodule   
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D.10 Multiply by D Module 

// ---------- MULTIPLY BY D ---------- 
 
module MULD     ( in, out ); 
 
 
// ---------- MODULE INTERFACE ---------- 
 
input       [7:0] in; 
output      [7:0] out; 
 
 
// ---------- MODULE REGISTERS AND SIGNALS ---------- 
 
wire    [7:0]       xt1, xt2, xt3; 
 
 
// ---------- MODULE IMPLEMENTATION ---------- 
 
assign out = xt3 ^ xt2 ^ in; 
 
 
// ---------- MODULES INSTANTIATION ---------- 
 
xtimes  xt_u1   ( .in(in), .out(xt1) ); 
xtimes  xt_u2   ( .in(xt1), .out(xt2) ); 
xtimes  xt_u3   ( .in(xt2), .out(xt3) ); 
 
 
endmodule  

 

D.11 Multiply by B Module 

// ---------- MULTIPLY BY B ---------- 
 
module MULB     ( in, out ); 
 
 
// ---------- MODULE INTERFACE ---------- 
 
input       [7:0] in; 
output      [7:0] out; 
 
 
// ---------- MODULE REGISTERS AND SIGNALS ---------- 
 
wire    [7:0]       xt1, xt2, xt3; 
 
 
// ---------- MODULE IMPLEMENTATION ---------- 
 
assign out = xt3 ^ xt1 ^ in; 
 
 
// ---------- MODULES INSTANTIATION ---------- 
 
xtimes  xt_u1   ( .in(in), .out(xt1) ); 
xtimes  xt_u2   ( .in(xt1), .out(xt2) ); 
xtimes  xt_u3   ( .in(xt2), .out(xt3) ); 
 
 
endmodule 
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D.12 Multiply by E Module 

// ---------- MULTIPLY BY E ---------- 
 
/* 
   e = 1110 = x3 + x2 + x, v = 1011 0010 = x7 + x5 + x4 + x 
   v*e(mod P) = x(x(x(x7 + x5 + x4 + x)modP)modP)modP + x(x(x7 + x5 + x4 + x)modP)modP + x(x7 + x5 + 
x4 + x)modP)modP)modP 
*/ 
 
module MULE     ( in, out ); 
 
 
// ---------- MODULE INTERFACE ---------- 
 
input       [7:0] in; 
output      [7:0] out; 
 
 
// ---------- MODULE REGISTERS AND SIGNALS ---------- 
 
wire    [7:0]       xt1, xt2, xt3; 
 
 
// ---------- MODULE IMPLEMENTATION ---------- 
 
assign out = xt3 ^ xt2 ^ xt1; 
 
 
// ---------- MODULES INSTANTIATION ---------- 
 
xtimes  xt_u1    ( .in(in), .out(xt1) ); 
xtimes  xt_u2    ( .in(xt1), .out(xt2) ); 
xtimes  xt_u3    ( .in(xt2), .out(xt3) );  
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D.13 Inv SubBytes Module 

`timescale 1ns / 1ps 
 
// ---------- INV SUB BYTES ---------- 
 
module inv_sub_bytes ( 
                    clk, 
                    reset_n, 
                    key_exp_rnd, 
                    step, 
                    k3_next,k7_next_rot, 
                    mix_out, 
                    sub_out              // output 
                    ); 
 
 
// ---------- MODULE INTERFACE ---------- 
 
input               clk;                // global clock 
input               reset_n;            // global negative active reset 
input       [3:0]   key_exp_rnd;        // round to calculate for key expansion 
input       [2:0]   step;               // step counter [0 to 4] 
input       [31:0]  k3_next, k7_next_rot;// word 3 and word 7 rotated used for key expansion 
input       [31:0]  mix_out;            // processed column after inv mix operation 
output wire [31:0]  sub_out;            // processed column after inv sub bytes or sub bytes operation 
 
// ---------- MODULE REGISTERS AND SIGNALS ---------- 
 
reg     [31:0]      sub_in;             // column as input for S-Box 
reg      ende;  // set encrpytion or decryption mode for S-Box 
 
 
// ---------- MODULE IMPLEMENTATION ---------- 
 
always @ (posedge clk or negedge reset_n) 
  begin: INV_SUB_BYTES 
   
    if (!reset_n) 
       begin    // reset sub_in and ende register 
  sub_in <= 32'b0;       
   ende <= 1'b0; 
       end 
     
    else if (step == 5)                 // Key expansion 
      begin                             // for round 2,4...14 : 3,5...13 
        sub_in <= (key_exp_rnd[0] == 1) ? {k7_next_rot} : k3_next[31:0]; // rounds 1 to 13 
        //Rotate to use as input for S-Box when j mod Nk = 0, j = 8,16...56 
        ende <= 1'b0;   // encryption mode for key expansion 
      end 
    else   
      begin                             // Inv_Sub_0, Inv_Sub_1, Inv_Sub_2, Inv_Sub_3 
        ende <= 1'b1;   // decryption mode for inv substitution bytes operation 
        sub_in <= mix_out;              // steps 1,2,3 and 4 
      end 
 
  end 
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// ---------- S-BOX UNITS ---------- 
 
sbox            sbox0_u        (  
                                sub_in[31:24], 
    ende, 
                                sub_out[31:24] 
                                ); 
                                 
sbox            sbox1_u        ( 
                                sub_in[23:16], 
    ende, 
                                sub_out[23:16] 
                                ); 
                                 
sbox            sbox2_u        ( 
                                sub_in[15:8], 
    ende, 
                                sub_out[15:8] 
                                ); 
                                 
sbox            sbox3_u        ( 
                                sub_in[7:0], 
    ende, 
                                sub_out[7:0] 
                                ); 
 
endmodule 
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D.14 Inv ShiftRows Module 

`timescale 1ns / 1ps 
 
/*           
            Initial Matrix 
    127:120 |  95:88  |  63:56  |  31:24 
    119:112 |  87:80  |  55:48  |  23:16 
    111:104 |  79:72  |  47:40  |  15:8 
    103:96  |  71:64  |  39:32  |   7:0 
     
            After Shift Rows 
    127:120 |  95:88  |  63:56  |  31:24 
     23:16  | 119:112 |  87:80  |  55:48 
     47:40  |  15:8   | 111:104 |  79:72 
     71:64  |  39:32  |   7:0   | 103:96  
     
*/ 
 
// ---------- INV SHIFT ROWS and OUTPUT ---------- 
 
module inv_shift_rows ( 
                    clk, 
                    reset_n, 
                    rnd_cnt, 
                    step, 
                    sub_out, 
                    mix_out, 
                    block_1,            // output 
                    block_2             // output 
                    ); 
 
 
// ---------- MODULE INTERFACE ---------- 
 
input               clk;                // global clock 
input               reset_n;            // global negative edge reset 
input       [3:0]   rnd_cnt;            // round counter [0 to 14] 
input       [2:0]   step;               // step counter [0 to 4] 
input       [31:0]  sub_out;            // processed column after inv substitution bytes operation 
input       [31:0]  mix_out;            // processed column after inv mix operation 
output reg  [127:0] block_1;            // storage block used after first inv shift rows operation and 
to store final output(data_out) 
output reg  [127:0] block_2;            // storage block used after second inv shift rows operation 
 
 
// ---------- MODULE IMPLEMENTATION ---------- 
 
always @ (posedge clk or negedge reset_n) 
  begin: INV_SHIFT_ROWS 
   
    if (!reset_n)                       // reset blocks registers 
      begin 
        block_1 <= 128'b0; 
        block_2 <= 128'b0; 
      end 
       
    else 
        case (step) 
         
          0:  begin                         // Inv_Shift_3 
                if(rnd_cnt[0] != 1'b0)      // for rounds 1,3...13 
                  {block_1[31:24],block_1[119:112],block_1[79:72],block_1[39:32]} <= sub_out; 
                else                        // for rounds 2,4...14 
                  {block_2[31:24],block_2[119:112],block_2[79:72],block_2[39:32]} <= sub_out; 
              end 
                                            // data_out first column 
          1:  if(rnd_cnt == 4'd14) block_1[127:96] <= mix_out; 
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    else 
        case (step) 
         
          0:  begin                         // Inv_Shift_3 
                if(rnd_cnt[0] != 1'b0)      // for rounds 1,3...13 
                  {block_1[31:24],block_1[119:112],block_1[79:72],block_1[39:32]} <= sub_out; 
                else                        // for rounds 2,4...14 
                  {block_2[31:24],block_2[119:112],block_2[79:72],block_2[39:32]} <= sub_out; 
              end 
                                            // data_out first column 
          1:  if(rnd_cnt == 4'd14) block_1[127:96] <= mix_out; 
 
          2:  begin                      
                if(rnd_cnt == 4'd14)        // data_out second column 
                  block_1[95:64] <= mix_out; 
                else 
                  begin                     // Inv_Shift_0 
                    if(rnd_cnt[0] == 1'b0)  // for rounds 0,2...12 
                      {block_1[127:120],block_1[87:80],block_1[47:40],block_1[7:0]} <= sub_out; 
                    else                    // for rounds 1,3..13 
                      {block_2[127:120],block_2[87:80],block_2[47:40],block_2[7:0]} <= sub_out; 
                  end     
              end 
 
          3:  begin                      
                if(rnd_cnt == 4'd14)        // data_out third column 
                block_1[63:32] <= mix_out; 
                else 
                  begin                     // Inv_Shift_1 
                    if(rnd_cnt[0] == 1'b0)  // for rounds 0,2...12 
                      {block_1[95:88],block_1[55:48],block_1[15:8],block_1[103:96]} <= sub_out; 
                    else                    // for rounds 1,3..13 
                      {block_2[95:88],block_2[55:48],block_2[15:8],block_2[103:96]} <= sub_out; 
                  end 
              end 
 
          4:  begin                      
                if(rnd_cnt == 4'd0)         // data_out fourth column 
                  block_1[31:0] <= mix_out; 
                else 
                  begin                     // Inv_Shift_2 
                    if(rnd_cnt[0] == 1'b1)  // for rounds 0,2...12 
                      {block_1[63:56],block_1[23:16],block_1[111:104],block_1[71:64]} <= sub_out; 
                    else                    // for rounds 1,3..13 
                      {block_2[63:56],block_2[23:16],block_2[111:104],block_2[71:64]} <= sub_out; 
                  end                 
              end 
 
        endcase 
 
  end 
 
 
endmodule  
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D.15 S-box dec Module 

module sbox_dec( 
 in, 
 ende, 
 out); 
 
input [7:0] in; 
input  ende;  //0: encryption;  1: decryption 
output [7:0] out; 
  
wire [7:0] first_matrix_out,first_matrix_in,last_matrix_out_enc,last_matrix_out_dec; 
wire [3:0] p,q,p2,q2,sumpq,sump2q2,inv_sump2q2,p_new,q_new,mulpq,q2B; 
wire [7:0]  first_matrix_out_L; 
wire [3:0]  p_new_L,q_new_L; 
  
// GF(256) to GF(16) transformation 
assign first_matrix_in[7:0] = ende ? INV_AFFINE(in[7:0]): in[7:0]; 
assign first_matrix_out[7:0] = GF256_TO_GF16(first_matrix_in[7:0]); 
 
/* 
// pipeline 1 
always @ (posedge clk or posedge reset) 
begin 
 if (reset) 
  first_matrix_out_L[7:0] <= 8'b0; 
 else if (enable) 
  first_matrix_out_L[7:0] <= first_matrix_out[7:0]; 
end 
*/ 
assign first_matrix_out_L[7:0] = first_matrix_out[7:0]; 
assign p[3:0] = first_matrix_out_L[3:0]; 
assign q[3:0] = first_matrix_out_L[7:4]; 
assign p2[3:0] = SQUARE(p[3:0]); 
assign q2[3:0] = SQUARE(q[3:0]); 
//p+q 
assign sumpq[3:0] = p[3:0] ^ q[3:0]; 
//p*q 
assign mulpq[3:0] = MUL(p[3:0],q[3:0]); 
//q2B calculation 
assign q2B[0]=q2[1]^q2[2]^q2[3]; 
assign q2B[1]=q2[0]^q2[1]; 
assign q2B[2]=q2[0]^q2[1]^q2[2]; 
assign q2B[3]=q2[0]^q2[1]^q2[2]^q2[3]; 
//p2+p*q+q2B 
assign sump2q2[3:0] = q2B[3:0] ^ mulpq[3:0] ^ p2[3:0]; 
// inverse p2+pq+q2B 
assign inv_sump2q2[3:0] = INVERSE(sump2q2[3:0]); 
// results 
assign p_new[3:0] = MUL(sumpq[3:0],inv_sump2q2[3:0]); 
assign q_new[3:0] = MUL(q[3:0],inv_sump2q2[3:0]); 
 
/* 
// pipeline 2 
always @ (posedge clk or posedge reset) 
begin 
 if (reset) 
  {p_new_L[3:0],q_new_L[3:0]} <= 8'b0; 
 else if (enable) 
  {p_new_L[3:0],q_new_L[3:0]} <= {p_new[3:0],q_new[3:0]}; 
end 
*/  
assign {p_new_L[3:0],q_new_L[3:0]} = {p_new[3:0],q_new[3:0]}; 
 
// GF(16) to GF(256) transformation 
assign last_matrix_out_dec[7:0] = GF16_TO_GF256(p_new_L[3:0],q_new_L[3:0]); 
assign last_matrix_out_enc[7:0] = AFFINE(last_matrix_out_dec[7:0]); 
//assign en_dout[7:0] = last_matrix_out_enc[7:0]; 
//assign de_dout[7:0] = last_matrix_out_dec[7:0]; 
assign out[7:0] = ende ?  last_matrix_out_dec[7:0] : last_matrix_out_enc[7:0]; 
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/*****************************************************************************/ 
// Functions 
/*****************************************************************************/ 
  
// convert GF(256) to GF(16) 
function [7:0] GF256_TO_GF16; 
input [7:0] data; 
reg a,b,c; 
begin 
 a = data[1]^data[7]; 
 b = data[5]^data[7]; 
 c = data[4]^data[6]; 
 GF256_TO_GF16[0] = c^data[0]^data[5]; 
 GF256_TO_GF16[1] = data[1]^data[2]; 
 GF256_TO_GF16[2] = a; 
 GF256_TO_GF16[3] = data[2]^data[4]; 
 GF256_TO_GF16[4] = c^data[5];  
 GF256_TO_GF16[5] = a^c; 
 GF256_TO_GF16[6] = b^data[2]^data[3]; 
 GF256_TO_GF16[7] = b; 
end 
endfunction 
  
// squre  
function [3:0] SQUARE; 
input [3:0] data; 
begin 
 SQUARE[0] = data[0]^data[2]; 
 SQUARE[1] = data[2]; 
 SQUARE[2] = data[1]^data[3]; 
 SQUARE[3] = data[3]; 
end 
endfunction 
  
// inverse 
function [3:0] INVERSE; 
input [3:0] data; 
reg a; 
begin 
 a=data[1]^data[2]^data[3]^(data[1]&data[2]&data[3]); 
 INVERSE[0]=a^data[0]^(data[0]&data[2])^(data[1]&data[2])^(data[0]&data[1]&data[2]); 
 INVERSE[1]=(data[0]&data[1])^(data[0]&data[2])^(data[1]&data[2])^data[3]^ 
  (data[1]&data[3])^(data[0]&data[1]&data[3]); 
 INVERSE[2]=(data[0]&data[1])^data[2]^(data[0]&data[2])^data[3]^ 
  (data[0]&data[3])^(data[0]&data[2]&data[3]); 
 INVERSE[3]=a^(data[0]&data[3])^(data[1]&data[3])^(data[2]&data[3]); 
end 
endfunction 
  
// multiply 
function [3:0] MUL; 
input [3:0] d1,d2; 
reg a,b; 
begin 
 a=d1[0]^d1[3]; 
 b=d1[2]^d1[3]; 
  
 MUL[0]=(d1[0]&d2[0])^(d1[3]&d2[1])^(d1[2]&d2[2])^(d1[1]&d2[3]); 
 MUL[1]=(d1[1]&d2[0])^(a&d2[1])^(b&d2[2])^((d1[1]^d1[2])&d2[3]); 
 MUL[2]=(d1[2]&d2[0])^(d1[1]&d2[1])^(a&d2[2])^(b&d2[3]); 
 MUL[3]=(d1[3]&d2[0])^(d1[2]&d2[1])^(d1[1]&d2[2])^(a&d2[3]); 
end 
endfunction 
  



Appendix 

Master Thesis - Saul García Rodríguez  lxxvi 

// GF16 to GF256 transform 
function [7:0] GF16_TO_GF256; 
input [3:0] p,q; 
reg a,b; 
begin 
 a=p[1]^q[3]; 
 b=q[0]^q[1]; 
  
 GF16_TO_GF256[0]=p[0]^q[0]; 
 GF16_TO_GF256[1]=b^q[3]; 
 GF16_TO_GF256[2]=a^b; 
 GF16_TO_GF256[3]=b^p[1]^q[2]; 
 GF16_TO_GF256[4]=a^b^p[3]; 
 GF16_TO_GF256[5]=b^p[2]; 
 GF16_TO_GF256[6]=a^p[2]^p[3]^q[0]; 
 GF16_TO_GF256[7]=b^p[2]^q[3]; 
end 
endfunction 
  
// affine transformation 
function [7:0] AFFINE; 
input [7:0] data; 
begin 
 //affine trasformation 
 AFFINE[0]=(!data[0])^data[4]^data[5]^data[6]^data[7]; 
 AFFINE[1]=(!data[0])^data[1]^data[5]^data[6]^data[7]; 
 AFFINE[2]=data[0]^data[1]^data[2]^data[6]^data[7]; 
 AFFINE[3]=data[0]^data[1]^data[2]^data[3]^data[7]; 
 AFFINE[4]=data[0]^data[1]^data[2]^data[3]^data[4]; 
 AFFINE[5]=(!data[1])^data[2]^data[3]^data[4]^data[5]; 
 AFFINE[6]=(!data[2])^data[3]^data[4]^data[5]^data[6]; 
 AFFINE[7]=data[3]^data[4]^data[5]^data[6]^data[7]; 
end 
endfunction 
  
// inverse affine transformation 
function [7:0] INV_AFFINE; 
input [7:0] data; 
reg a,b,c,d; 
begin 
 a=data[0]^data[5]; 
 b=data[1]^data[4]; 
 c=data[2]^data[7]; 
 d=data[3]^data[6]; 
 INV_AFFINE[0]=(!data[5])^c; 
 INV_AFFINE[1]=data[0]^d; 
 INV_AFFINE[2]=(!data[7])^b; 
 INV_AFFINE[3]=data[2]^a; 
 INV_AFFINE[4]=data[1]^d; 
 INV_AFFINE[5]=data[4]^c; 
 INV_AFFINE[6]=data[3]^a; 
 INV_AFFINE[7]=data[6]^b; 
end 
endfunction 
endmodule 

 
// based on https://github.com/freecores/aes_highthroughput_lowarea/blob/master/verilog/rtl/sbox.v   
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Appendix E – Test bench code and results 

Verilog code is provided in this section as test benches to validate the cipher 

encryption and decryption functions following the procedures specified by The 

Advanced Encryption Standard Algorithm Validation Suite (AESAVS) in addition 

with vectors provided by NIST [87]. Besides, simulation results for the first 10 and 

last 10 cases are presented as well. The Known Answer Tests (KAT) and the 

Monte Carlo Test are the tests computed in the simulation. 
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E.1 KAT test for encryption 

E.1.1 Verilog Code 

`timescale 1ns / 10ps 
 
// ---------- TEST BENCH --- AES-256 --- ENCRYPTION ---------- 
 
module aes256_enc_tb(); 
 
 
// ---------- MODULE REGISTERS AND SIGNALS ---------- 
 
parameter       tests = 405;    // number of tests 
 
reg [255:0]     key_vectors         [tests-1:0];    // input key test vectors 
reg [127:0]     plaintext_vectors   [tests-1:0];    // input data test vectors 
reg [127:0]     ciphertext_vectors  [tests-1:0];    // expected outputs test vectors 
 
reg             error_det;      // error detector 
integer         j;              // loop integer 
integer         FILE;           // file to store records of validation 
 
// ---------- UUT INTERFACE REGISTERS AND SIGNALS ---------- 
 
reg             clk;            // global clock 
reg             reset_n;        // global async negative edge reset 
reg             start;          // start pulse 
reg  [255:0]    key_in;         // 256-bit key 
reg  [127:0]    data_in;        // 128-bit block size of plaintext 
wire [127:0]    data_out;       // 128-bit ciphertext 
wire            ready;          // output ready 
 
 
// ---------- UNIT UNDERT TEST ---------- 
 
aes256_enc  dut    ( 
                    clk, 
                    reset_n, 
                    start, 
                    key_in, 
                    data_in, 
                    data_out,       // output 
                    ready           // output 
                    ); 
 
 
// ---------- EVENTS ---------- 
 
event reset_enable;     // async negative edge reset pulse 
event reset_done;       // reset is done 
event finish_sim;       // finish simulation 
 
 
// ---------- AESAVS Known Answer Tests (KAT) VECTORS ---------- 
// https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/block-ciphers 
 
initial 
  begin 
                  // read KAT vectors from files 
    $readmemh("key_vectors.txt",        key_vectors);           // 256bit keys 
    $readmemh("plaintext_vectors.txt",  plaintext_vectors);     // 128bit plaintexts 
    $readmemh("ciphertext_vectors.txt", ciphertext_vectors);    // 128bit expected ciphertexts 
 
    FILE = $fopen("AES256_enc_validation.txt");   // export results to file 
 
  end 
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// ---------- GLOBAL CLOCK GENERATOR ---------- 
 
initial     clk = 1'b1; 
always   #10 clk = ~clk; 
 
 
// ---------- DEFAULT INPUT VALUES ---------- 
 
initial  
  begin 
 start = 1'b0; 
 key_in = 256'b0; 
 data_in = 128'b0; 
 error_det = 1'b0; 
  end 
 
 
// ---------- GLOBAL ASYNC NEGATIVE EDGE RESET GENERATOR ---------- 
   
always @(reset_enable) 
  begin 
        reset_n = 1'b0; 
 #15    reset_n = 1'b1; 
 -> reset_done; 
  end 
 
 
// ---------- MAIN TEST BENCH PROCESS CONTROL ---------- 
 
initial 
  begin 
     
    -> reset_enable;                // reset pulse 
    @(reset_done);                  // wait until reset is done 
     
    for(j=0; j < tests; j=j+1) 
      begin 
  
        key_in = key_vectors[j];        // key input value 
        data_in = plaintext_vectors[j]; // plaintext input vaule 
 
        start = 1'b1;                  // start pulse 
        @ (posedge clk); 
        start = 1'b0; 
        @ (posedge clk); 
        @(ready);                       // wait until encryption ready 
         
        $fdisplay(FILE, "Test :\t%d", j);       // display results 
        $fdisplay(FILE, "Key :\t\t\t%64h", key_vectors[j]); 
        $fdisplay(FILE, "Plaintext :\t\t%32h", plaintext_vectors[j]);     
        $fdisplay(FILE, "Obtained Ciphertext :\t%32h", data_out); 
        $fdisplay(FILE, "Expected Ciphertext :\t%32h", ciphertext_vectors[j]); 
     
 if(data_out == ciphertext_vectors[j])   // obtained ciphertext as expected 
        $fdisplay(FILE, "Test Result : PASSED\n"); 
 else  
         begin                                 // obtained ciphertext different than expected 
            $fdisplay(FILE, "Test Result : FAILED at TIME %d\n", $time); 
            error_det = 1; 
            -> finish_sim; 
         end 
       
     if(j == tests-1) -> finish_sim;         // finish simulation after last test 
         
 @(posedge clk); 
       
      end 
 
end  
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// ---------- SIMULATION RESULT ---------- 
 
always @(finish_sim) 
  begin 
   
    $fdisplay(FILE, "###   Simulation DONE   ###"); 
    $display("###   Simulation DONE   ###"); 
     
    if (error_det == 0)         // No error detected during entire simulation 
      begin 
        $fdisplay(FILE, "Simulation Result : PASSED\n"); 
        $display("Simulation Result : PASSED\n"); 
      end 
    else                        // Error detected 
      begin 
        $fdisplay(FILE, "Simulation Result : FAILED\n"); 
        $display("Simulation Result : FAILED\n"); 
      end 
 
    repeat(5)@ (posedge clk); 
    $finish; 
 
  end 
 
endmodule 
  

  



Appendix 

Master Thesis - Saul García Rodríguez  lxxxi 

E.1.2 Test Results 

Test :           0 
Key :  
 0000000000000000000000000000000000000000000000000000000000000000 
Plaintext :  014730f80ac625fe84f026c60bfd547d 
Obtained Ciphertext : 5c9d844ed46f9885085e5d6a4f94c7d7 
Expected Ciphertext : 5c9d844ed46f9885085e5d6a4f94c7d7 
Test Result : PASSED 
 
Test :           1 
Key :  
 0000000000000000000000000000000000000000000000000000000000000000 
Plaintext :  0b24af36193ce4665f2825d7b4749c98 
Obtained Ciphertext : a9ff75bd7cf6613d3731c77c3b6d0c04 
Expected Ciphertext : a9ff75bd7cf6613d3731c77c3b6d0c04 
Test Result : PASSED 
 
Test :           2 
Key :  
 0000000000000000000000000000000000000000000000000000000000000000 
Plaintext :  761c1fe41a18acf20d241650611d90f1 
Obtained Ciphertext : 623a52fcea5d443e48d9181ab32c7421 
Expected Ciphertext : 623a52fcea5d443e48d9181ab32c7421 
Test Result : PASSED 
 
Test :           3 
Key :  
 0000000000000000000000000000000000000000000000000000000000000000 
Plaintext :  8a560769d605868ad80d819bdba03771 
Obtained Ciphertext : 38f2c7ae10612415d27ca190d27da8b4 
Expected Ciphertext : 38f2c7ae10612415d27ca190d27da8b4 
Test Result : PASSED 
 
Test :           4 
Key :  
 0000000000000000000000000000000000000000000000000000000000000000 
Plaintext :  91fbef2d15a97816060bee1feaa49afe 
Obtained Ciphertext : 1bc704f1bce135ceb810341b216d7abe 
Expected Ciphertext : 1bc704f1bce135ceb810341b216d7abe 
Test Result : PASSED 
 
Test :           5 
Key :  
 c47b0294dbbbee0fec4757f22ffeee3587ca4730c3d33b691df38bab076bc558 
Plaintext :  00000000000000000000000000000000 
Obtained Ciphertext : 46f2fb342d6f0ab477476fc501242c5f 
Expected Ciphertext : 46f2fb342d6f0ab477476fc501242c5f 
Test Result : PASSED 
 
Test :           6 
Key :  
 28d46cffa158533194214a91e712fc2b45b518076675affd910edeca5f41ac64 
Plaintext :  00000000000000000000000000000000 
Obtained Ciphertext : 4bf3b0a69aeb6657794f2901b1440ad4 
Expected Ciphertext : 4bf3b0a69aeb6657794f2901b1440ad4 
Test Result : PASSED 
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Test :           7 
Key :  
 c1cc358b449909a19436cfbb3f852ef8bcb5ed12ac7058325f56e6099aab1a1c 
Plaintext :  00000000000000000000000000000000 
Obtained Ciphertext : 352065272169abf9856843927d0674fd 
Expected Ciphertext : 352065272169abf9856843927d0674fd 
Test Result : PASSED 
 
Test :           8 
Key :  
 984ca75f4ee8d706f46c2d98c0bf4a45f5b00d791c2dfeb191b5ed8e420fd627 
Plaintext :  00000000000000000000000000000000 
Obtained Ciphertext : 4307456a9e67813b452e15fa8fffe398 
Expected Ciphertext : 4307456a9e67813b452e15fa8fffe398 
Test Result : PASSED 
 
Test :           9 
Key :   b43d08a447ac8609baa-
dae4ff12918b9f68fc1653f1269222f123981ded7a92f 
Plaintext :  00000000000000000000000000000000 
Obtained Ciphertext : 4663446607354989477a5c6f0f007ef4 
Expected Ciphertext : 4663446607354989477a5c6f0f007ef4 
Test Result : PASSED 
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Test :         395 
Key :   fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe00 
Plaintext :  00000000000000000000000000000000 
Obtained Ciphertext : 5b40ff4ec9be536ba23035fa4f06064c 
Expected Ciphertext : 5b40ff4ec9be536ba23035fa4f06064c 
Test Result : PASSED 
 
Test :         396 
Key :   ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00 
Plaintext :  00000000000000000000000000000000 
Obtained Ciphertext : 60eb5af8416b257149372194e8b88749 
Expected Ciphertext : 60eb5af8416b257149372194e8b88749 
Test Result : PASSED 
 
Test :         397 
Key :   ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff80 
Plaintext :  00000000000000000000000000000000 
Obtained Ciphertext : 2f005a8aed8a361c92e440c15520cbd1 
Expected Ciphertext : 2f005a8aed8a361c92e440c15520cbd1 
Test Result : PASSED 
 
Test :         398 
Key :   ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc0 
Plaintext :  00000000000000000000000000000000 
Obtained Ciphertext : 7b03627611678a997717578807a800e2 
Expected Ciphertext : 7b03627611678a997717578807a800e2 
Test Result : PASSED 
 
Test :         399 
Key :   ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0 
Plaintext :  00000000000000000000000000000000 
Obtained Ciphertext : cf78618f74f6f3696e0a4779b90b5a77 
Expected Ciphertext : cf78618f74f6f3696e0a4779b90b5a77 
Test Result : PASSED 
 
Test :         400 
Key :   fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0 
Plaintext :  00000000000000000000000000000000 
Obtained Ciphertext : 03720371a04962eaea0a852e69972858 
Expected Ciphertext : 03720371a04962eaea0a852e69972858 
Test Result : PASSED 
 
Test :         401 
Key :   fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8 
Plaintext :  00000000000000000000000000000000 
Obtained Ciphertext : 1f8a8133aa8ccf70e2bd3285831ca6b7 
Expected Ciphertext : 1f8a8133aa8ccf70e2bd3285831ca6b7 
Test Result : PASSED 
 
Test :         402 
Key :   fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc 
Plaintext :  00000000000000000000000000000000 
Obtained Ciphertext : 27936bd27fb1468fc8b48bc483321725 
Expected Ciphertext : 27936bd27fb1468fc8b48bc483321725 
Test Result : PASSED 
 
Test :         403 
Key :   fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe 
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Plaintext :  00000000000000000000000000000000 
Obtained Ciphertext : b07d4f3e2cd2ef2eb545980754dfea0f 
Expected Ciphertext : b07d4f3e2cd2ef2eb545980754dfea0f 
Test Result : PASSED 
 
Test :         404 
Key :   ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 
Plaintext :  00000000000000000000000000000000 
Obtained Ciphertext : 4bf85f1b5d54adbc307b0a048389adcb 
Expected Ciphertext : 4bf85f1b5d54adbc307b0a048389adcb 
Test Result : PASSED 
 
###   Simulation DONE   ### 
Simulation Result : PASSED 
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E.2 Monte Carlo Test for encryption 

E.2.1 Verilog Code 

`timescale 1ns / 10ps 
 
// ---------- TEST BENCH --- AES-256 --- ENCRYPTION ---------- 
 
module aes256_mct_enc_tb(); 
 
 
// ---------- MODULE REGISTERS AND SIGNALS ---------- 
 
parameter       key_tests = 100;        // number of key tests 
parameter       iterations = 1000;      // number of iterations per key 
 
                // AESAVS Monte Carlo Test Vectors 
// https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/block-ciphers 
parameter       key_mct_vector = 
256'hf9e8389f5b80712e3886cc1fa2d28a3b8c9cd88a2d4a54c6aa86ce0fef944be0; 
parameter       plaintext_mct_vector = 128'hb379777f9050e2a818f2940cbbd9aba4; 
parameter       ciphertext_mct_vector = 128'hc5d2cb3d5b7ff0e23e308967ee074825; 
 
reg [255:0]     key [key_tests-1:0];    // keys generated in each test 
reg [127:0]     pt  [iterations-1:0];   // plaintexts generated in each test 
reg [127:0]     ct  [iterations-1:0];   // ciphertext generated in each test 
 
reg             error_det;      // error detector 
integer         j;              // key loop integer 
integer         i;              // iteration loop integer 
integer         FILE;           // file to store records of validation 
 
// ---------- UUT INTERFACE REGISTERS AND SIGNALS ---------- 
 
reg             clk;            // global clock 
reg             reset_n;        // global async negative edge reset 
reg             start;          // start pulse 
reg  [255:0]    key_in;         // 256-bit key 
reg  [127:0]    data_in;        // 128-bit block size of plaintext 
wire [127:0]    data_out;       // 128-bit ciphertext 
wire            ready;          // output ready 
 
 
// ---------- UNIT UNDERT TEST ---------- 
 
aes256_enc  dut    ( 
                    clk, 
                    reset_n, 
                    start, 
                    key_in, 
                    data_in, 
                    data_out,       // output 
                    ready           // output 
                    ); 
 
 
// ---------- EVENTS ---------- 
 
event reset_enable;     // async negative edge reset pulse 
event reset_done;       // reset is done 
event start_pulse;      // start pulse 
event mct_done;         // Monte Carlo Test done  
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// ---------- GLOBAL CLOCK GENERATOR ---------- 
 
initial     clk = 1'b1; 
always   #10 clk = ~clk; 
 
 
// ---------- INITIAL VALUES ---------- 
 
initial  
  begin 
 start = 1'b0;              // initial input values 
 key_in = 256'b0;    
 data_in = 128'b0; 
      
    FILE = $fopen("AES256_MCT_enc_validation.txt"); // export results to file 
 
    key[0] = key_mct_vector;    // initial test values 
    pt[0] = plaintext_mct_vector; 
  end 
 
 
// ---------- GLOBAL ASYNC NEGATIVE EDGE RESET GENERATOR ---------- 
   
always @(reset_enable) 
  begin 
        reset_n = 1'b0; 
 #15    reset_n = 1'b1; 
 -> reset_done; 
  end 
 
 
// ---------- MAIN TEST BENCH PROCESS CONTROL ---------- 
 
initial 
  begin 
 
    -> reset_enable;            // reset pulse 
    @(reset_done);              // wait until reset is done 
 
    for(j=0; j < key_tests; j=j+1)      // loop to test 100 different keys 
      begin 
 
        $fdisplay(FILE, "Test :\t%d", j);               // display to file test number 
        $fdisplay(FILE, "Key :\t\t%64h", key[j]);       // display to file key value 
        $fdisplay(FILE, "Plaintext :\t%32h", pt[0]);    // display to file data value 
 
        for(i=0; i < iterations; i=i+1) // loop to test 1000 different plaintexts for each key 
          begin 
             
            key_in = key[j];            // key input value 
            data_in = pt[i];            // plaintext input value 
                 
            start = 1'b1;             // start pulse 
            @ (posedge clk); 
            start = 1'b0; 
            @ (posedge clk); 
            @(ready)                    // wait until encryption ready 
             
            ct[i] = data_out;           // stores output ciphertext 
            pt[i+1] = ct[i];            // obtained ciphertext becomes plaintext for next iteration 
    
            @ (posedge clk); 
 
          end  
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// next key generated from current key and the last 2 cipherkey 
          key[j+1] = key[j] ^ {ct[iterations-2],ct[iterations-1]};       
  // initial plaintext for next test will be the last cipherkey of current test 
          pt[0] = ct[iterations-1];      
           // display to file last cipherkey of current test 
          $fdisplay(FILE, "Ciphertext :\t%32h\n", ct[iterations-1]);     
           
      end 
       
      -> mct_done;      // Monte Carlo Test done 
       
end 
 
 
// ---------- SIMULATION RESULTS ---------- 
 
always @(mct_done) 
  begin 
            // display to file results 
    $fdisplay(FILE, "###   MONTE CARLO TEST DONE   ###"); 
    $fdisplay(FILE, "Obtained Ciphertext :\t%32h", ct[iterations-1]); 
    $fdisplay(FILE, "Expected Ciphertext :\t%32h\n", ciphertext_mct_vector); 
            // display to console results 
    $display("###   MONTE CARLO TEST DONE   ###"); 
    $display("Obtained Ciphertext :\t%32h", ct[iterations-1]); 
    $display("Expected Ciphertext :\t%32h\n", ciphertext_mct_vector); 
     
    if(ct[iterations-1] != ciphertext_mct_vector)       // obtained ciphertext different than expected 
      begin 
        $fdisplay(FILE, "Monte Carlo Test : FAILED"); 
        $display("Monte Carlo Test : FAILED"); 
      end 
    else 
      begin                                             // obtained ciphertext as expected 
        $fdisplay(FILE, "Monte Carlo Test : PASSED"); 
        $display("Monte Carlo Test : PASSED"); 
      end 
         
    @ (posedge clk); 
    $finish; 
 
  end 
 
endmodule  
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E.2.2 Test Results 

 
Test :           0 
Key :  f9e8389f5b80712e3886cc1fa2d28a3b8c9cd88a2d4a54c6aa86ce0fef944be0 
Plaintext : b379777f9050e2a818f2940cbbd9aba4 
Ciphertext : 6893ebaf0a1fccc704326529fdfb60db 
 
Test :           1 
Key :  db9ea5a2284fa17fb63e13bf891c8e42e40f332527559801aeb4ab26126f2b3b 
Plaintext : 6893ebaf0a1fccc704326529fdfb60db 
Ciphertext : f3c78a5e85e5439bf26d5818718157d6 
 
Test :           2 
Key :  7099ed88e82744228a5303ae2ef6c0d017c8b97ba2b0db9a5cd9f33e63ee7ced 
Plaintext : f3c78a5e85e5439bf26d5818718157d6 
Ciphertext : 2326b958b00b3050697eedb08cc20504 
 
Test :           3 
Key :  5e9e65ea96e78dd4fb78ea1184f6ebde34ee002312bbebca35a71e8eef2c79e9 
Plaintext : 2326b958b00b3050697eedb08cc20504 
Ciphertext : ec4332d5e3cebd3e0f5fc51452f4560d 
 
Test :           4 
Key :  33acf1cafc822646dc869e905bd26f9ad8ad32f6f17556f43af8db9abdd82fe4 
Plaintext : ec4332d5e3cebd3e0f5fc51452f4560d 
Ciphertext : 5da58b5ef2076340d555f861c3449a77 
 
Test :           5 
Key :  eb0ae85c1b44d5db4729d268f49be2a08508b9a8037235b4efad23fb7e9cb593 
Plaintext : 5da58b5ef2076340d555f861c3449a77 
Ciphertext : 307d50c18a0b6a08402ff131d72cb7ec 
 
Test :           6 
Key :  fac93b561a9b6a0e809d71ecdb980afab575e96989795fbcaf82d2caa9b0027f 
Plaintext : 307d50c18a0b6a08402ff131d72cb7ec 
Ciphertext : 92c34165a2963e77e05e2d6fc2d931d5 
 
Test :           7 
Key :  a0559e41d58af36174a67246df87541b27b6a80c2bef61cb4fdcffa56b6933aa 
Plaintext : 92c34165a2963e77e05e2d6fc2d931d5 
Ciphertext : cb33d519a1fdb1d5fbb185c47870c1ed 
 
Test :           8 
Key :  e48824d6c2251d3a27f38fb543c31fc1ec857d158a12d01eb46d7a611319f247 
Plaintext : cb33d519a1fdb1d5fbb185c47870c1ed 
Ciphertext : 78fb452f384c8f870e572890588f3728 
 
Test :           9 
Key :  7a33440ad7c69d583355c745e5c88c47947e383ab25e5f99ba3a52f14b96c56f 
Plaintext : 78fb452f384c8f870e572890588f3728 
Ciphertext : 12375e02a8bbc84b00feaab54a66db43 
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Test :          90 
Key :  6d7f0f7584162a1fa4dd6764548f355af22f775429bbc776848a586a75ce6f76 
Plaintext : 805be62789549ce6af74966467f41135 
Ciphertext : ab6001c6c4c56e8ca393c5fd173505ba 
 
Test :          91 
Key :  d8ecc39ac1d00c53216f6e64e826a7a9594f7692ed7ea9fa27199d9762fb6acc 
Plaintext : ab6001c6c4c56e8ca393c5fd173505ba 
Ciphertext : 3ba3673f4f495dd1541d47c22b7921c5 
 
Test :          92 
Key :  493108f91caedf714652149a2b2030fe62ec11ada237f42b7304da5549824b09 
Plaintext : 3ba3673f4f495dd1541d47c22b7921c5 
Ciphertext : b24fe17cdc5c8cfa4260c38691b57bfa 
 
Test :          93 
Key :  446af6dd5f58755aeaa0a1226d8c584fd0a3f0d17e6b78d1316419d3d83730f3 
Plaintext : b24fe17cdc5c8cfa4260c38691b57bfa 
Ciphertext : 86d999a63b96f6c9d9aaf3be6202977b 
 
Test :          94 
Key :  65f92d4e1723d5e58aeb350c79df28de567a697745fd8e18e8ceea6dba35a788 
Plaintext : 86d999a63b96f6c9d9aaf3be6202977b 
Ciphertext : c4712aa733f9737f91e4ed61609e02f1 
 
Test :          95 
Key :  915cee6af4ea95623f7122acda5e9040920b43d07604fd67792a070cdaaba579 
Plaintext : c4712aa733f9737f91e4ed61609e02f1 
Ciphertext : 0e8c1a77b280f4c753682768fd6f3b23 
 
Test :          96 
Key :  8e9bb2887fe60d42db4d827f00ba68ff9c8759a7c48409a02a42206427c49e5a 
Plaintext : 0e8c1a77b280f4c753682768fd6f3b23 
Ciphertext : dccb684d47c480cc1317dcaa451234c0 
 
Test :          97 
Key :  cbf85a6645469e5df882fe840776b6aa404c31ea8340896c3955fcce62d6aa9a 
Plaintext : dccb684d47c480cc1317dcaa451234c0 
Ciphertext : 9a2c4f07489c14265e33ac031d02b3d8 
 
Test :          98 
Key :  3ea3c33d7439ab3c478c01907f13cda7da607eedcbdc9d4a676650cd7fd41942 
Plaintext : 9a2c4f07489c14265e33ac031d02b3d8 
Ciphertext : 5c8e622ddbd32ee79c17572e8b3ee61c 
 
Test :          99 
Key :  312c5b43263c1af8d1e35c0f24d1004386ee1cc0100fb3adfb7107e3f4eaff5e 
Plaintext : 5c8e622ddbd32ee79c17572e8b3ee61c 
Ciphertext : c5d2cb3d5b7ff0e23e308967ee074825 
 
###   MONTE CARLO TEST DONE   ### 
Obtained Ciphertext : c5d2cb3d5b7ff0e23e308967ee074825 
Expected Ciphertext : c5d2cb3d5b7ff0e23e308967ee074825 
 
Monte Carlo Test : PASSED 
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E.3 KAT test for decryption 

E.3.1 Verilog Code 

`timescale 1ns / 10ps 
 
// ---------- TEST BENCH --- AES-256 --- DECRYPTION ---------- 
 
module aes256_dec_tb(); 
 
 
// ---------- MODULE REGISTERS AND SIGNALS ---------- 
 
parameter       tests = 405;    // number of tests 
 
reg [255:0]     key_vectors         [tests-1:0];    // input key test vectors 
reg [127:0]     ciphertext_vectors   [tests-1:0];    // input data test vectors 
reg [127:0]     plaintext_vectors  [tests-1:0];    // expected outputs test vectors 
 
reg             error_det;      // error detector 
integer         j;              // loop integer 
integer         FILE;           // file to store records of validation 
 
// ---------- UUT INTERFACE REGISTERS AND SIGNALS ---------- 
 
reg             clk;            // global clock 
reg             reset_n;        // global async negative edge reset 
reg             start;          // start pulse 
reg  [255:0]    key_in;         // 256-bit key 
reg  [127:0]    data_in;        // 128-bit block size of ciphertext 
wire [127:0]    data_out;       // 128-bit plaintext 
wire            ready;          // output ready 
 
 
// ---------- UNIT UNDERT TEST ---------- 
 
aes256_dec  dut    ( 
                    clk, 
                    reset_n, 
                    start, 
                    key_in, 
                    data_in, 
                    data_out,       // output 
                    ready           // output 
                    ); 
 
 
// ---------- EVENTS ---------- 
 
event reset_enable;     // async negative edge reset pulse 
event reset_done;       // reset is done 
event start_pulse;      // start pulse 
event finish_sim;       // finish simulation 
 
 
// ---------- AESAVS Known Answer Tests (KAT) VECTORS ---------- 
// https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/block-ciphers 
 
initial 
  begin                 // read KAT vectors from files 
    $readmemh("key_vectors.txt",        key_vectors);           // 256bit keys 
    $readmemh("ciphertext_vectors.txt", ciphertext_vectors);    // 128bit ciphertexts 
    $readmemh("plaintext_vectors.txt",  plaintext_vectors);     // 128bit expected plaintexts 
  end 
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// ---------- GLOBAL CLOCK GENERATOR ---------- 
 
initial  clk = 1'b1; 
always   #10 clk = ~clk; 
 
 
// ---------- DEFAULT INPUT VALUES ---------- 
 
initial  
  begin 
 start = 1'b0; 
 key_in = 256'b0; 
 data_in = 128'b0; 
 error_det = 1'b0; 
  end 
 
 
// ---------- GLOBAL ASYNC NEGATIVE EDGE RESET GENERATOR ---------- 
   
always @(reset_enable) 
  begin 
        reset_n = 1'b0; 
 #15    reset_n = 1'b1; 
 -> reset_done; 
  end 
 
 
// ---------- MAIN TEST BENCH PROCESS CONTROL ---------- 
 
initial 
  begin 
     
    -> reset_enable;                // reset pulse 
    @(reset_done);                  // wait until reset is done 
 
    FILE = $fopen("AES256_dec_validation.txt"); 
     
    for(j=0; j < tests; j=j+1) 
      begin 
  
        key_in = key_vectors[j];        // key input value 
        data_in = ciphertext_vectors[j]; // ciphertext input vaule 
 
        start = 1'b1;                  // start pulse 
        @ (posedge clk); 
        start = 1'b0; 
        @ (posedge clk); 
        @(ready);                       // wait until decryption ready 
         
        $fdisplay(FILE, "Test :\t%d", j);       // display results 
        $fdisplay(FILE, "Key :\t\t\t%64h", key_vectors[j]); 
        $fdisplay(FILE, "Ciphertext :\t\t%32h", ciphertext_vectors[j]);     
        $fdisplay(FILE, "Obtained Plaintext:\t%32h", data_out); 
        $fdisplay(FILE, "Expected Plaintext :\t%32h", plaintext_vectors[j]); 
   if(data_out == plaintext_vectors[j])   // obtained plaintext as expected 
        $fdisplay(FILE, "Test Result : PASSED\n"); 
 else  
         begin                                 // obtained plaintext different than expected 
            $fdisplay(FILE, "Test Result : FAILED at TIME %d\n", $time); 
            error_det = 1; 
            -> finish_sim; 
         end 
       
     if(j == tests-1) -> finish_sim;         // finish simulation after last last 
         
 @(posedge clk); 
       
      end 
 
end  
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// ---------- SIMULATION RESULT ---------- 
 
always @(finish_sim) 
  begin 
   
    $fdisplay(FILE, "###   Simulation DONE   ###"); 
    $display("###   Simulation DONE   ###"); 
     
    if (error_det == 0)         // No error detected during entire simulation 
      begin 
        $fdisplay(FILE, "Simulation Result : PASSED\n"); 
        $display("Simulation Result : PASSED\n"); 
      end 
    else                        // Error detected 
      begin 
        $fdisplay(FILE, "Simulation Result : FAILED\n"); 
        $display("Simulation Result : FAILED\n"); 
      end 
 
    repeat(5)@ (posedge clk); 
    $finish; 
 
  end 
 
endmodule  
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E.3.2 Test Results 

Test :           0 
Key :  
 0000000000000000000000000000000000000000000000000000000000000000 
Ciphertext :  5c9d844ed46f9885085e5d6a4f94c7d7 
Obtained Plaintext: 014730f80ac625fe84f026c60bfd547d 
Expected Plaintext : 014730f80ac625fe84f026c60bfd547d 
Test Result : PASSED 
 
Test :           1 
Key :  
 0000000000000000000000000000000000000000000000000000000000000000 
Ciphertext :  a9ff75bd7cf6613d3731c77c3b6d0c04 
Obtained Plaintext: 0b24af36193ce4665f2825d7b4749c98 
Expected Plaintext : 0b24af36193ce4665f2825d7b4749c98 
Test Result : PASSED 
 
Test :           2 
Key :  
 0000000000000000000000000000000000000000000000000000000000000000 
Ciphertext :  623a52fcea5d443e48d9181ab32c7421 
Obtained Plaintext: 761c1fe41a18acf20d241650611d90f1 
Expected Plaintext : 761c1fe41a18acf20d241650611d90f1 
Test Result : PASSED 
 
Test :           3 
Key :  
 0000000000000000000000000000000000000000000000000000000000000000 
Ciphertext :  38f2c7ae10612415d27ca190d27da8b4 
Obtained Plaintext: 8a560769d605868ad80d819bdba03771 
Expected Plaintext : 8a560769d605868ad80d819bdba03771 
Test Result : PASSED 
 
Test :           4 
Key :  
 0000000000000000000000000000000000000000000000000000000000000000 
Ciphertext :  1bc704f1bce135ceb810341b216d7abe 
Obtained Plaintext: 91fbef2d15a97816060bee1feaa49afe 
Expected Plaintext : 91fbef2d15a97816060bee1feaa49afe 
Test Result : PASSED 
 
Test :           5 
Key :  
 c47b0294dbbbee0fec4757f22ffeee3587ca4730c3d33b691df38bab076bc558 
Ciphertext :  46f2fb342d6f0ab477476fc501242c5f 
Obtained Plaintext: 00000000000000000000000000000000 
Expected Plaintext : 00000000000000000000000000000000 
Test Result : PASSED 
 
Test :           6 
Key :  
 28d46cffa158533194214a91e712fc2b45b518076675affd910edeca5f41ac64 
Ciphertext :  4bf3b0a69aeb6657794f2901b1440ad4 
Obtained Plaintext: 00000000000000000000000000000000 
Expected Plaintext : 00000000000000000000000000000000 
Test Result : PASSED 
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Test :           7 
Key :  
 c1cc358b449909a19436cfbb3f852ef8bcb5ed12ac7058325f56e6099aab1a1c 
Ciphertext :  352065272169abf9856843927d0674fd 
Obtained Plaintext: 00000000000000000000000000000000 
Expected Plaintext : 00000000000000000000000000000000 
Test Result : PASSED 
 
Test :           8 
Key :  
 984ca75f4ee8d706f46c2d98c0bf4a45f5b00d791c2dfeb191b5ed8e420fd627 
Ciphertext :  4307456a9e67813b452e15fa8fffe398 
Obtained Plaintext: 00000000000000000000000000000000 
Expected Plaintext : 00000000000000000000000000000000 
Test Result : PASSED 
 
Test :           9 
Key :   b43d08a447ac8609baa-
dae4ff12918b9f68fc1653f1269222f123981ded7a92f 
Ciphertext :  4663446607354989477a5c6f0f007ef4 
Obtained Plaintext: 00000000000000000000000000000000 
Expected Plaintext : 00000000000000000000000000000000 
Test Result : PASSED 
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Test :         395 
Key :   fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe00 
Ciphertext :  5b40ff4ec9be536ba23035fa4f06064c 
Obtained Plaintext: 00000000000000000000000000000000 
Expected Plaintext : 00000000000000000000000000000000 
Test Result : PASSED 
 
Test :         396 
Key :   ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00 
Ciphertext :  60eb5af8416b257149372194e8b88749 
Obtained Plaintext: 00000000000000000000000000000000 
Expected Plaintext : 00000000000000000000000000000000 
Test Result : PASSED 
 
Test :         397 
Key :   ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff80 
Ciphertext :  2f005a8aed8a361c92e440c15520cbd1 
Obtained Plaintext: 00000000000000000000000000000000 
Expected Plaintext : 00000000000000000000000000000000 
Test Result : PASSED 
 
Test :         398 
Key :   ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc0 
Ciphertext :  7b03627611678a997717578807a800e2 
Obtained Plaintext: 00000000000000000000000000000000 
Expected Plaintext : 00000000000000000000000000000000 
Test Result : PASSED 
 
Test :         399 
Key :   ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0 
Ciphertext :  cf78618f74f6f3696e0a4779b90b5a77 
Obtained Plaintext: 00000000000000000000000000000000 
Expected Plaintext : 00000000000000000000000000000000 
Test Result : PASSED 
 
Test :         400 
Key :   fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0 
Ciphertext :  03720371a04962eaea0a852e69972858 
Obtained Plaintext: 00000000000000000000000000000000 
Expected Plaintext : 00000000000000000000000000000000 
Test Result : PASSED 
 
Test :         401 
Key :   fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8 
Ciphertext :  1f8a8133aa8ccf70e2bd3285831ca6b7 
Obtained Plaintext: 00000000000000000000000000000000 
Expected Plaintext : 00000000000000000000000000000000 
Test Result : PASSED 
 
Test :         402 
Key :   fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc 
Ciphertext :  27936bd27fb1468fc8b48bc483321725 
Obtained Plaintext: 00000000000000000000000000000000 
Expected Plaintext : 00000000000000000000000000000000 
Test Result : PASSED 
 
Test :         403 
Key :   fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe 
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Ciphertext :  b07d4f3e2cd2ef2eb545980754dfea0f 
Obtained Plaintext: 00000000000000000000000000000000 
Expected Plaintext : 00000000000000000000000000000000 
Test Result : PASSED 
 
Test :         404 
Key :   ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 
Ciphertext :  4bf85f1b5d54adbc307b0a048389adcb 
Obtained Plaintext: 00000000000000000000000000000000 
Expected Plaintext : 00000000000000000000000000000000 
Test Result : PASSED 
 
###   Simulation DONE   ### 
Simulation Result : PASSED  
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E.4 Monte Carlo Test for decryption 

E.4.1 Verilog Code 

`timescale 1ns / 10ps 
 
// ---------- TEST BENCH --- AES-256 --- DECRYPTION ---------- 
 
module aes256_mct_dec_tb(); 
 
 
// ---------- MODULE REGISTERS AND SIGNALS ---------- 
 
parameter       key_tests = 100;        // number of key tests 
parameter       iterations = 1000;      // number of iterations per key 
 
                // AESAVS Monte Carlo Test Vectors 
// https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/block-ciphers 
parameter       key_mct_vector = 
256'h2b09ba39b834062b9e93f48373b8dd018dedf1e5ba1b8af831ebbacbc92a2643; 
parameter       ciphertext_mct_vector = 128'h89649bd0115f30bd878567610223a59d; 
parameter       plaintext_mct_vector = 128'he3d3868f578caf34e36445bf14cefc68; 
 
reg [255:0]     key [key_tests-1:0];    // keys generated in each test 
reg [127:0]     ct  [iterations-1:0];   // ciphertext generated in each test 
reg [127:0]     pt  [iterations-1:0];   // plaintexts generated in each test 
 
reg             error_det;      // error detector 
integer         j;              // key loop integer 
integer         i;              // iteration loop integer 
integer         FILE;           // file to store records of validation 
 
// ---------- UUT INTERFACE REGISTERS AND SIGNALS ---------- 
 
reg             clk;            // global clock 
reg             reset_n;        // global async negative edge reset 
reg             start;          // start pulse 
reg  [255:0]    key_in;         // 256-bit key 
reg  [127:0]    data_in;        // 128-bit block size of ciphertext 
wire [127:0]    data_out;       // 128-bit plaintext 
wire            ready;          // output ready 
 
 
// ---------- UNIT UNDERT TEST ---------- 
 
aes256_dec  dut    ( 
                    clk, 
                    reset_n, 
                    start, 
                    key_in, 
                    data_in, 
                    data_out,       // output 
                    ready           // output 
                    );  



Appendix 

Master Thesis - Saul García Rodríguez  xcviii 

 
// ---------- EVENTS ---------- 
 
event reset_enable;     // async negative edge reset pulse 
event reset_done;       // reset is done 
event start_pulse;      // start pulse 
event mct_done;         // Monte Carlo Test done 
 
 
// ---------- GLOBAL CLOCK GENERATOR ---------- 
 
initial     clk = 1'b1; 
always  #10 clk = ~clk; 
 
 
// ---------- INITIAL VALUES ---------- 
 
initial  
  begin 
 start = 1'b0;              // initial input values 
 key_in = 256'b0;    
 data_in = 128'b0; 
      
     FILE = $fopen("AES256_MCT_dec_validation.txt"); // export results to file 
 
     key[0] = key_mct_vector;    // initial test values 
     ct[0] = ciphertext_mct_vector; 
  end 
 
 
// ---------- GLOBAL ASYNC NEGATIVE EDGE RESET GENERATOR ---------- 
   
always @(reset_enable) 
  begin 
        reset_n = 1'b0; 
 #15    reset_n = 1'b1; 
 -> reset_done; 
  end 
 
// ---------- MAIN TEST BENCH PROCESS CONTROL ---------- 
 
initial 
  begin 
 
    -> reset_enable;            // reset pulse 
    @(reset_done);              // wait until reset is done 
 
    for(j=0; j < key_tests; j=j+1)      // loop to test 100 different keys 
      begin 
 
        $fdisplay(FILE, "Test :\t%d", j);               // display to file test number 
        $fdisplay(FILE, "Key :\t\t%64h", key[j]);       // display to file key value 
        $fdisplay(FILE, "Ciphertext :\t%32h", ct[0]);    // display to file data value 
 
        for(i=0; i < iterations; i=i+1) // loop to test 1000 different ciphertexts for each key 
          begin 
             
            key_in = key[j];            // key input value 
            data_in = ct[i];            // ciphertext input value 
                 
            start = 1'b1;             // start pulse 
            @ (posedge clk); 
            start = 1'b0; 
            @ (posedge clk); 
            @(ready)                    // wait until decryption ready 
             
            pt[i] = data_out;           // stores output plaintext 
            ct[i+1] = pt[i];            // obtained ciphertext becomes ciphertext for next iteration 
    
            @ (posedge clk); 
 
          end  
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          key[j+1] = key[j] ^ {pt[iterations-2],pt[iterations-1]};      // next key generated from 
current key and the last 2 plaintexts 
          ct[0] = pt[iterations-1];     // initial ciphertext for next test will be the last plaintext 
of current test 
           
          $fdisplay(FILE, "Plaintext :\t%32h\n", pt[iterations-1]);    // display to file last 
plaintext of current test 
           
      end 
       
      -> mct_done;      // Monte Carlo Test done 
 
end 
 
 
// ---------- SIMULATION RESULTS ---------- 
 
always @(mct_done) 
  begin 
            // display to file results 
    $fdisplay(FILE, "###   MONTE CARLO TEST DONE   ###"); 
    $fdisplay(FILE, "Obtained Plaintext :\t%32h", pt[iterations-1]); 
    $fdisplay(FILE, "Expected Plaintext :\t%32h\n", plaintext_mct_vector); 
            // display to console results 
    $display("###   MONTE CARLO TEST DONE   ###"); 
    $display("Obtained Plaintext :\t%32h", pt[iterations-1]); 
    $display("Expected Plaintext :\t%32h\n", plaintext_mct_vector); 
     
    if(pt[iterations-1] != plaintext_mct_vector)       // obtained plaintext different than expected 
      begin 
        $fdisplay(FILE, "Monte Carlo Test : FAILED"); 
        $display("Monte Carlo Test : FAILED"); 
      end 
    else 
      begin                                             // obtained plaintext as expected 
        $fdisplay(FILE, "Monte Carlo Test : PASSED"); 
        $display("Monte Carlo Test : PASSED"); 
      end 
         
    @ (posedge clk); 
    $finish; 
 
  end 
 
endmodule  
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E.4.2 Test Results 

Test :           0 
Key :  2b09ba39b834062b9e93f48373b8dd018dedf1e5ba1b8af831ebbacbc92a2643 
Ciphertext : 89649bd0115f30bd878567610223a59d 
Plaintext : 1f9b9b213f1884fa98b62dd6639fd33b 
 
Test :           1 
Key :  58ac71619fdc3ac73a17f285319e1cd492766ac485030e02a95d971daab5f578 
Ciphertext : 1f9b9b213f1884fa98b62dd6639fd33b 
Plaintext : aecd334ef8fb0c51b6896ae065d8be28 
 
Test :           2 
Key :  f6e3cca2cd628c10625c62cf08b385743cbb598a7df802531fd4fdfdcf6d4b50 
Ciphertext : aecd334ef8fb0c51b6896ae065d8be28 
Plaintext : f1938dd245c055e9c380336ff8450d9d 
 
Test :           3 
Key :  a9ae3bd7d454f19d69289875ff009d16cd28d458383857badc54ce92372846cd 
Ciphertext : f1938dd245c055e9c380336ff8450d9d 
Plaintext : 42d5c4a13b748800ebfe0f67781dcff1 
 
Test :           4 
Key :  e3bc6232865f0476149be7162ef8fc4b8ffd10f9034cdfba37aac1f54f35893c 
Ciphertext : 42d5c4a13b748800ebfe0f67781dcff1 
Plaintext : 469968a00226f0aae7acfda02b2ce0ae 
 
Test :           5 
Key :  451fbfba7f09b625540822fac8c8e30bc9647859016a2f10d0063c5564196992 
Ciphertext : 469968a00226f0aae7acfda02b2ce0ae 
Plaintext : eab144d6f80ccfd2fae95d16784718ac 
 
Test :           6 
Key :  f53e21e46a0ec97c980d49d6f4b81ec423d53c8ff966e0c22aef61431c5e713e 
Ciphertext : eab144d6f80ccfd2fae95d16784718ac 
Plaintext : e04b91c3f084d733d3d0c1c7c152695a 
 
Test :           7 
Key :  5fb3a2cbdbe6971fcd345961bdcba5f6c39ead4c09e237f1f93fa084dd0c1864 
Ciphertext : e04b91c3f084d733d3d0c1c7c152695a 
Plaintext : e47db9b8c7fcc9459fa0a7fc84047b5b 
 
Test :           8 
Key :  6b145436c5ae0dcb2477f94f5bdb037927e314f4ce1efeb4669f07785908633f 
Ciphertext : e47db9b8c7fcc9459fa0a7fc84047b5b 
Plaintext : f617d26b55da999d65b2d236358b2e60 
 
Test :           9 
Key :  126752da3d7f9a0ffc1a46ccaa8a3925d1f4c69f9bc46729032dd54e6c834d5f 
Ciphertext : f617d26b55da999d65b2d236358b2e60 
Plaintext : 066ffea799ad5f09d03cb868deb1591e 
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Test :          90 
Key :  c4bde4a0c5f80329be6dd515f5bf6dabd805dd0a9ed853a94ba02087bae9596e 
Ciphertext : 1515ef6a25cf3943eadadc36a029194a 
Plaintext : 7b4ad946dfb59c80b1dc5cedb2fa87a0 
 
Test :          91 
Key :  80b47f9126b0b1f5ab408bb9ea5f349aa34f044c416dcf29fa7c7c6a0813dece 
Ciphertext : 7b4ad946dfb59c80b1dc5cedb2fa87a0 
Plaintext : fa10a53e14cde5ef1e9a8a5692847aa5 
 
Test :          92 
Key :  86a43939c8cd243f7ff2a9658524373b595fa17255a02ac6e4e6f63c9a97a46b 
Ciphertext : fa10a53e14cde5ef1e9a8a5692847aa5 
Plaintext : 4c9bed07308abcd0b09265b5efbe301c 
 
Test :          93 
Key :  74a8f02a15285153e0ae160fbddcf6bf15c44c75652a96165474938975299477 
Ciphertext : 4c9bed07308abcd0b09265b5efbe301c 
Plaintext : 75b7496c42809a3a592acbd8e069269e 
 
Test :          94 
Key :  293b40a2f70cc2c4262554663fb6f0986073051927aa0c2c0d5e58519540b2e9 
Ciphertext : 75b7496c42809a3a592acbd8e069269e 
Plaintext : 2dbc01185af7e084d90578468b6b10ef 
 
Test :          95 
Key :  b04d4f4eb708eef86c5b6b8e08a665084dcf04017d5deca8d45b20171e2ba206 
Ciphertext : 2dbc01185af7e084d90578468b6b10ef 
Plaintext : c95b3a9f689c9dce4995c24f72dd5162 
 
Test :          96 
Key :  7cb9f7211815e0cb48b71286f84f80a184943e9e15c171669dcee2586cf6f364 
Ciphertext : c95b3a9f689c9dce4995c24f72dd5162 
Plaintext : 616e55c3bf113e2c18cae3c61b7eb7d1 
 
Test :          97 
Key :  b3cdb46cf92aa0b96e87212bc650d5e5e5fa6b5daad04f4a8504019e778844b5 
Ciphertext : 616e55c3bf113e2c18cae3c61b7eb7d1 
Plaintext : 87e8b80767ebbdbad75cb94f4cb54f3b 
 
Test :          98 
Key :  512c2a3821eb53af613141c71e1076656212d35acd3bf2f05258b8d13b3d0b8e 
Ciphertext : 87e8b80767ebbdbad75cb94f4cb54f3b 
Plaintext : c83e20e18f2b1457788954b49fd84307 
 
Test :          99 
Key :  9977c985745bc33954a2ce898bc8febdaa2cf3bb4210e6a72ad1ec65a4e54889 
Ciphertext : c83e20e18f2b1457788954b49fd84307 
Plaintext : e3d3868f578caf34e36445bf14cefc68 
 
###   MONTE CARLO TEST DONE   ### 
Obtained Plaintext : e3d3868f578caf34e36445bf14cefc68 
Expected Plaintext : e3d3868f578caf34e36445bf14cefc68 
 
Monte Carlo Test : PASSED 
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Appendix F – Code for testing on GUI 

F.1 Verilog Code for Top Module 

`timescale 1ns / 1ps 
 
// ---------- AES256 UART ---------- 
 
module aes256_uart  ( 
                    clk100, 
                    reset_n, 
                    data_in, 
                    LED,                // output 
                    data_out           // output 
                    ); 
 
 
// ---------- MODULE INTERFACE ---------- 
 
input               clk100;        // global clock 
input               reset_n;       // global negative edge reset 
input               data_in;       // input data bits for RX 
output wire [3:0]   LED;           // output from counter for RX 
output wire         data_out;      // output data bits from TX 
 
 
// ---------- MODULE REGISTERS AND SIGNALS ---------- 
 
  // 10 MHz clock 
  // Want to interface to 115200 baud UART 
  // 10000000 / 115200 = 87 Clocks Per Bit. 
reg             clk;        // 10MHz             
reg [3:0]       cnt_clk; 
 
wire            rx; 
wire            rx_ready; 
wire [7:0]      rx_byte; 
 
reg  [7:0]      tx_byte; 
reg             tx_start; 
wire            tx_busy; 
wire            tx; 
     
reg             aes_start; 
wire            aes_start_enc; 
wire            aes_start_dec; 
reg  [7:0]      enc_dec; 
reg  [255:0]    key; 
reg  [127:0]    text_in; 
wire [127:0]    text_out; 
wire [127:0]    text_out_enc; 
wire [127:0]    text_out_dec; 
wire            aes_ready; 
wire            aes_ready_enc; 
wire            aes_ready_dec; 
 
wire            rx_done; 
parameter       num_bytes_rx = 49;    // number of bytes 
parameter       num_bytes_tx = 16;    // number of bytes 
reg  [5:0]      cnt_rx;              // loop integer to send data 
reg  [4:0]      cnt_tx;   
 
reg [2:0]           current_state; 
parameter           RX_DATA = 6'd0, 
                    AES = 6'd1, 
                    TX_DATA = 6'd2, 
                    TX_BUSY = 6'd3;  
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// ---------- STATE MACHINE ---------- 
 
always @(posedge clk100 or negedge reset_n) 
  begin: CNT_CLK 
    if(!reset_n) 
      cnt_clk <= 0; 
    else if(cnt_clk == 9) 
      cnt_clk <= 0;  
    else  
      cnt_clk <= cnt_clk + 1; 
  end 
 
always @(posedge clk100 or negedge reset_n) 
  begin: CLK_GEN 
    if(!reset_n) 
        clk <= 0; 
    else if(cnt_clk < 5) 
        clk <= 1; 
    else                    
        clk <= 0; 
  end 
     
 
always @ (posedge clk or negedge reset_n) 
  begin: STATE_MEMORY 
   
    if (!reset_n)   current_state <= RX_DATA; 
    else 
      begin 
        case (current_state) 
          RX_DATA : current_state <= (rx_done) ? AES : RX_DATA; 
          AES :     current_state <= (aes_ready) ? TX_DATA : AES; 
          TX_DATA : current_state <= TX_BUSY; 
          TX_BUSY : begin 
                      if (!tx_busy && !tx_start) 
                        current_state <= TX_DATA; 
                      else if (cnt_tx == num_bytes_tx) 
                        current_state <= RX_DATA; 
                      else 
                        current_state <= TX_BUSY; 
                    end 
     
          default : current_state <= RX_DATA; 
        endcase 
      end 
  end 
 
always @ (posedge clk or negedge reset_n) 
  begin: RX 
 
    if (!reset_n) 
      begin 
        enc_dec <= 0; 
        key <= 0; 
        text_in <= 0; 
        aes_start <= 0; 
      end  
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    else if (current_state == RX_DATA && rx_ready) 
        case (cnt_rx) 
            0:  enc_dec <= rx_byte; 
            1: key[7:0] <= rx_byte; 
            2: key[15:8] <= rx_byte; 
            3: key[23:16] <= rx_byte; 
            4: key[31:24] <= rx_byte; 
            5: key[39:32] <= rx_byte; 
            6: key[47:40] <= rx_byte; 
            7: key[55:48] <= rx_byte; 
            8: key[63:56] <= rx_byte; 
            9: key[71:64] <= rx_byte; 
            10: key[79:72] <= rx_byte; 
            11: key[87:80] <= rx_byte; 
            12: key[95:88] <= rx_byte; 
            13: key[103:96] <= rx_byte; 
            14: key[111:104] <= rx_byte; 
            15: key[119:112] <= rx_byte; 
            16: key[127:120] <= rx_byte; 
            17: key[135:128] <= rx_byte; 
            18: key[143:136] <= rx_byte; 
            19: key[151:144] <= rx_byte; 
            20: key[159:152] <= rx_byte; 
            21: key[167:160] <= rx_byte; 
            22: key[175:168] <= rx_byte; 
            23: key[183:176] <= rx_byte; 
            24: key[191:184] <= rx_byte; 
            25: key[199:192] <= rx_byte; 
            26: key[207:200] <= rx_byte; 
            27: key[215:208] <= rx_byte; 
            28: key[223:216] <= rx_byte; 
            29: key[231:224] <= rx_byte; 
            30: key[239:232] <= rx_byte; 
            31: key[247:240] <= rx_byte; 
            32: key[255:248] <= rx_byte; 
             
            33: text_in[7:0] <= rx_byte; 
            34: text_in[15:8] <= rx_byte; 
            35: text_in[23:16] <= rx_byte; 
            36: text_in[31:24] <= rx_byte; 
            37: text_in[39:32] <= rx_byte; 
            38: text_in[47:40] <= rx_byte; 
            39: text_in[55:48] <= rx_byte; 
            40: text_in[63:56] <= rx_byte; 
            41: text_in[71:64] <= rx_byte; 
            42: text_in[79:72] <= rx_byte; 
            43: text_in[87:80] <= rx_byte; 
            44: text_in[95:88] <= rx_byte; 
            45: text_in[103:96] <= rx_byte; 
            46: text_in[111:104] <= rx_byte; 
            47: text_in[119:112] <= rx_byte; 
            48: begin 
                  text_in[127:120] <= rx_byte; 
                  aes_start <= 1; 
                end 
 
        endcase 
    else if (current_state == AES) 
        aes_start <= 0; 
 
  end 
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always @ (posedge clk or negedge reset_n) 
  begin: TX 
 
    if (!reset_n) 
      begin 
        tx_byte <= 0; 
        tx_start <= 1'b0; 
      end 
    else if (current_state == TX_DATA) 
      begin 
        tx_byte <= (cnt_tx == 0)  ? text_out  [7:0]  :  
                   (cnt_tx == 1)  ? text_out [15:8]  : 
                   (cnt_tx == 2)  ? text_out [23:16] : 
                   (cnt_tx == 3)  ? text_out [31:24] : 
                   (cnt_tx == 4)  ? text_out [39:32] :  
                   (cnt_tx == 5)  ? text_out [47:40] : 
                   (cnt_tx == 6)  ? text_out [55:48] : 
                   (cnt_tx == 7)  ? text_out [63:56] : 
                   (cnt_tx == 8)  ? text_out [71:64] : 
                   (cnt_tx == 9)  ? text_out [79:72] :  
                   (cnt_tx == 10) ? text_out [87:80] : 
                   (cnt_tx == 11) ? text_out [95:88] : 
                   (cnt_tx == 12) ? text_out[103:96] : 
                   (cnt_tx == 13) ? text_out[111:104]: 
                   (cnt_tx == 14) ? text_out[119:112]:  
                   (cnt_tx == 15) ? text_out[127:120]: 8'b0; 
 
        tx_start <= 1'b1; 
      end 
    else if (current_state == TX_BUSY) 
        tx_start <= 1'b0; 
 
  end 
 
 
always @ (posedge clk or negedge reset_n) 
  begin: CNT_RX 
 
    if (!reset_n) 
        cnt_rx <= 0; 
    else if (rx_ready) 
        cnt_rx <= cnt_rx + 1; 
    else if (cnt_rx == num_bytes_rx) 
        cnt_rx <= 0; 
 
  end 
 
 
always @ (posedge clk or negedge reset_n) 
  begin: CNT_TX 
 
    if (!reset_n) 
    cnt_tx <= 0; 
    else if (current_state==TX_DATA) 
    cnt_tx <= cnt_tx + 1; 
    else if (cnt_tx == num_bytes_tx && current_state==TX_BUSY) 
    cnt_tx <= 0; 
 
  end 
 
assign aes_start_enc = (enc_dec == 0) ? aes_start : 0; 
assign aes_start_dec = (enc_dec != 0) ? aes_start : 0; 
assign text_out = (enc_dec == 0) ? text_out_enc : text_out_dec; 
assign aes_ready = (enc_dec == 0) ? aes_ready_enc : aes_ready_dec; 
 
assign rx = data_in; 
assign rx_done = (cnt_rx == num_bytes_rx) ? 1'b1 : 1'b0; 
assign data_out = tx; 
assign LED = cnt_rx; 

  



Appendix 

Master Thesis - Saul García Rodríguez  cvi 

 
// ---------- MODULES INSTANTIATION ---------- 
 
aes256_enc  aes256_enc_u    ( 
                            .clk(clk), 
                            .reset_n(reset_n), 
                            .start(aes_start_enc), 
                            .key_in(key), 
                            .data_in(text_in), 
                            .data_out(text_out_enc),    // output 
                            .ready(aes_ready_enc)       // output 
                            ); 
                             
aes256_dec  aes256_dec_u    ( 
                            .clk(clk), 
                            .reset_n(reset_n), 
                            .start(aes_start_dec), 
                            .key_in(key), 
                            .data_in(text_in), 
                            .data_out(text_out_dec),    // output 
                            .ready(aes_ready_dec)       // output 
                            ); 
 
serial_rx   serial_rx_u     ( 
                            .clk(clk), 
                            .rst(!reset_n), 
                            .rx(rx), 
                            .new_data(rx_ready),    // output 
                            .data(rx_byte)          // output 
                            ); 
                         
serial_tx   serial_tx_u     ( 
                            .clk(clk), 
                            .rst(!reset_n), 
                            .tx_block(1'b0), 
                            .data(tx_byte), 
                            .new_data(tx_start), 
                            .busy(tx_busy),     // output 
                            .tx(tx)             // output 
                            ); 
         
 
endmodule 
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F.2 C++ Code for Qt GUI 

F.2.1 Source Code 

          
#include "serialcom.h" 
#include <QSerialPort> 
#include <QSerialPortInfo> 
#include <QFile> 
#include <QDebug> 
#include <QByteArray> 
 
SerialCom::SerialCom() 
{ 
    read2 = false; 
    num_bytes = 0; 
    connect(&serial_port, SIGNAL(readyRead()), this, SLOT(read_serial())); 
 
    QFile key_file("key_vectors.txt"); 
    if (!key_file.open(QIODevice::ReadOnly | QIODevice::Text)){ 
        qDebug() << "Error Opening File."; 
        return; 
    } 
 
    QTextStream key_in(&key_file); 
    int lines = 0; 
    while (!key_in.atEnd()) { 
       QString line = key_in.readLine(); 
       key_vectors[lines] = line; 
       lines++; 
    } 
 
    QFile plaintext_file("plaintext_vectors.txt"); 
    if (!plaintext_file.open(QIODevice::ReadOnly | QIODevice::Text)){ 
        qDebug() << "Error Opening File."; 
        return; 
    } 
 
    QTextStream plaintext_in(&plaintext_file); 
    lines = 0; 
    while (!plaintext_in.atEnd()) { 
       QString line = plaintext_in.readLine(); 
       plaintext_vectors[lines] = line; 
       lines++; 
    } 
 
    QFile ciphertext_file("ciphertext_vectors.txt"); 
    if (!ciphertext_file.open(QIODevice::ReadOnly | QIODevice::Text)){ 
        qDebug() << "Error Opening File."; 
        return; 
    } 
 
    QTextStream ciphertext_in(&ciphertext_file); 
    lines = 0; 
    while (!ciphertext_in.atEnd()) { 
       QString line = ciphertext_in.readLine(); 
       ciphertext_vectors[lines] = line; 
       lines++; 
    } 
 
}  
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void SerialCom::open(){ 
    QString USB_Port; 
 
    foreach(const QSerialPortInfo &serialPortInfo, QSerialPortInfo::availablePorts()){ 
 
        if((serialPortInfo.vendorIdentifier()==1027) && (serialPortInfo.productIdentifier()==24577)){ 
        USB_Port = serialPortInfo.portName(); 
        }/* 
        qDebug() << serialPortInfo.portName(); 
        qDebug() << serialPortInfo.vendorIdentifier(); 
        qDebug() << serialPortInfo.productIdentifier();*/ 
    } 
 
    serial_port.setPortName(USB_Port); 
    serial_port.setBaudRate(QSerialPort::Baud115200); 
    serial_port.setDataBits(QSerialPort::Data8); 
    serial_port.setParity(QSerialPort::NoParity); 
    serial_port.setStopBits(QSerialPort::OneStop); 
    serial_port.setFlowControl(QSerialPort::NoFlowControl); 
    bool error_sp = serial_port.open(QIODevice::ReadWrite); 
 
    if(error_sp == false){ qDebug() << "Error trying to open port"; } 
    else qDebug() << "Port Opened"; 
 
} 
 
void SerialCom::close(){ 
    serial_port.close(); 
    qDebug() << "Port Closed"; 
} 
 
void SerialCom::read_serial(){ 
 
    QByteArray  read_buf; 
    QString  exp_data_out; 
    int num_bytes_2; 
 
    data_out.resize(16); 
 
    buf.resize(16); 
 
    read_buf = serial_port.read(20); 
    num_bytes_2 = read_buf.size(); 
    read_buf.resize(num_bytes_2); 
 
    //qDebug() << "Buf: " << read_buf.toHex(); 
    //qDebug() << "Read: " << num_bytes_2; 
 
    for(int i=0; i < num_bytes_2; i++){ buf[i+num_bytes] = read_buf[i]; } 
    num_bytes += num_bytes_2; 
    //qDebug() << "Acum: " << num_bytes; 
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    if(num_bytes == 16){ 
        num_bytes = 0; 
        for(int i=0; i < 16; i++){ 
            data_out[i] = buf[15-i]; 
        } 
        qDebug() << "Total Buf: " << data_out.toHex(); 
        if(enc_dec){ 
            exp_data_out = ciphertext_vectors[test_num-1]; 
        } 
        else{ 
            exp_data_out = plaintext_vectors[test_num-1]; 
        } 
        if(data_out.toHex() == exp_data_out){ 
            result = "PASSED"; 
        } 
        else{ 
            result = "FAILED"; 
        } 
 
        emit dataReceived(); 
    } 
 
} 
 
void SerialCom::sendMsg(int test, bool en_de){ 
 
    enc_dec = en_de; 
    test_num = test; 
    QString datain; 
    QString str_key_datain; 
    QString sliced_str; 
    QByteArray key_datain; 
    key_datain.resize(49); 
    int hexByte; 
    bool ok; 
 
    QString key = key_vectors[test_num-1];     // Bits: 256, Bytes: 32, Nibbles:64 
    if(enc_dec){ // ENC 
        datain = plaintext_vectors[test_num-1];  // Bits: 128, Bytes: 16, Nibbles:32 
        // Key + Data_in: Bits: 384, Bytes: 48, Nibbles:96 
        // Enc_Dec + Key + Data_in: Bits: 392, Bytes: 49, Nibbles:98 
 
        str_key_datain = datain.append(key).append("00"); 
    } 
    else{   // DEC 
        datain = ciphertext_vectors[test_num-1]; 
        str_key_datain = datain.append(key).append("01");; 
    } 
 
    for(int i=0; i < 49; i++){ 
        sliced_str = str_key_datain.sliced(i*2,2); 
        hexByte = sliced_str.toInt(&ok, 16); 
        key_datain[48-i] = hexByte; 
    } 
 
    int n = serial_port.write(key_datain,49); 
    if(n == -1){ qDebug() << "Writting Fail"; } 
    qDebug() << "Msg Sent"; 
    //qDebug() << key_datain.toHex(); 
 
}  
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F.2.2 Header File 

#ifndef SERIALCOM_H 
#define SERIALCOM_H 
 
#include <QSerialPort> 
#include <QString> 
#include <QObject> 
 
class SerialCom: public QObject 
{ 
    Q_OBJECT 
 
public: 
    SerialCom(); 
    void open(); 
    void close(); 
    void sendMsg(int test, bool en_de); 
 
    QString key_vectors[405]; 
    QString plaintext_vectors[405]; 
    QString ciphertext_vectors[405]; 
    QByteArray data_out; 
    QString result; 
 
private: 
    QSerialPort serial_port; 
    QByteArray  buf; 
    unsigned char read_buf_ch[15]; 
    bool read2; 
    int num_bytes = 0; 
    int test_num; 
    int enc_dec; 
 
signals: 
    void dataReceived(); 
 
private slots: 
    void read_serial(); 
}; 
 
#endif // SERIALCOM_H  
  




