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ABSTRACT 

The aim of this master thesis is the design and implementation of mixed-signal 

processing chain for the optical determination of rotation angles by means of four 

sensors implemented as photodiodes with integrated polarization filters and a 

high-precision CORDIC hardware design implemented on an FPGA in Verilog. 

Furthermore, a light source and a polarizer are integrated in the measurement 

setup which is configured using an QT application. 
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1 Introduction 

Due to the increasing digitalization of technical systems, there is a great need for 

sensors and actuators, which as an interface to the analog world enable a digital 

core usually implemented as a microprocessor, to perceive the environment and 

actively influence it. Angle sensors play a major role in many applications, for 

example in mechatronic systems since the detection of angles and speeds of 

rotation is of particular importance for the control of precise motion sequences. 

In mechatronic systems today, many sensors are not integrated into silicon chips, 

but rather the sensor type best suited to the application is typically selected and 

combined with separate evaluation electronics. Microelectronic integration of 

sensors offers important advantages, such as very compact design, low weight, 

the possibility to integrate control and evaluation electronics, as well as other 

functions (calibration, communication interfaces, etc.), and very low production 

costs. 

The company advICo microelectronic GmbH is investigating an optical 

measuring principle called POLDI (Polarization Sensitive Photo Diodes) for the 

detection of angles and rotational movements, to circumvent the limitations of 

conventional sensor systems. This optical measurement method has the potential 

to detect very high rotation rates and allows a larger distance between the 

components of the sensor system. The integration of sensors and electronics on a 

chip in CMOS technology not only provides energy efficiency and 

miniaturization but also cost efficiency. As a preliminary work, TIA amplifiers 

circuits convert the photocurrents of the diodes into defined voltages and make 

them available for further signal processing [10]. In addition, discrete electronics 

is used to digitize the signals after amplification and offset correction. In this 

work, these digitized signals are read in an FPGA and then digitally processed to 

an absolute angle. 
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The objective of this master thesis is the development of the mixed-signal 

processing chain for the optical determination of the rotation angle by means of 

four POLDI sensors and a CORDIC hardware design implemented on an FPGA 

using Verilog. Furthermore, the thesis includes the integration of the light source 

and polarizer into the measurement setup which is configured using an QT 

application. 
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2 POLDI principles 

POLDI (Polarization Sensitive Photo Diodes) sensors measure the polarization 

of an incident light beam using photodiodes and polarization filters integrated on 

a chip in standard CMOS technology. Several photodiodes are integrated on a 

CMOS chip, each covered by a linear polarization filter, as shown in Figure 1. 

The polarization filters are realized in one of the metallization planes of the 

CMOS process by parallel conductive tracks, which lie at four different angles 

0°, 45°, 90°, and 135° to each other. When the POLDI sensor is irradiated with 

linearly polarized light, each diode delivers a photocurrent whose current 

intensity depends on the angle between the polarization plane of the incident light 

and the orientation of the polarization filter. [3] 

Each photodiode supplies a different photocurrent, which flows into a separate 

Transimpedance Amplifier (TIA). The generated voltages are applied to separate 

ADCs and are made available to a Field-Programmable Gate Array (FPGA), 

which can calculate the angle of the incident light using digital signal processing 

algorithms.  

 

Figure 2.1 The concept of angle measurement with a POLDI sensor [3] 

2.1 Polarisation 

In the wave model, light is described as a wave that oscillates perpendicular to its 

direction of propagation, also known as a transverse wave. The polarization 

describes the specific direction of the oscillation. Natural light, such as sunlight, 
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is not polarized and oscillates randomly in all directions. To convert this light into 

polarized light requires a polarization filter. This polarization filter only allows 

light waves to pass that are parallel to the polarization axis of the filter, while all 

other light waves are absorbed by the filter. The light intensity decreases when 

passing the polarization filter. Figure 3.1 shows the principle of polarisation. 

 

Figure 2.2 principle of polarisation 

When using two polarizing filters, the orientation of their polarization planes to 

each other plays an important role in light transmission. If both filters have the 

same orientation this has no effect on the light intensity. If the polarizing filters 

are arranged perpendicular to each other, no light is transmitted. If the two 

polarization filters are aligned offset to each other, for example at 45°, the light 

can pass, but the polarization of the transmitted light corresponds to the direction 

of the second polarization filter. Figure 2.3 depicts the passage of light through 

two polarization filters. 

 

Figure 2.3 the passage of light through two polarization filters 
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According to which the transparency of two crossed polarizing filters depends on 

the relative angle φ of the filters to each other. To the intensity I of the light 

passing the two filters applies:  I ~ cos2(φ) which is called Malus law, where 𝐼0 is 

the intensity of the fully polarized light before passing the second polarizing filter 

and α is the shift angle between the polarization planes of the polarizing filters. 

2.2 Measurement principle of the POLDI 

The measurement principle is based on Malus law. For the application as an angle 

sensor, linearly polarized light is required, which is generated by a polarizer in 

the beam path between light source and sensor and then falls on a photodiode 

with an integrated polarization filter. The current signal of the sensor is 

proportional to the intensity of the light, which passes the integrated polarization 

filter and contains an offset Fd, which is the dark current with additive noise. 

Malus law can be extended for the application to: 

 I I ∗ cos α α F  (2.1) 

here I0 is the unknown intensity of the incident beam, α𝑛 corresponds to the 

respective angles of 0°, 45°, 90°, or 135° of the integrated polarization filters of 

the sensors. By taking the difference between the 0° and 90° or 45° and 135° 

signal pairs and assuming that all diodes have the same dark current, the offset is 

eliminated. 
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a)  

 

 

b) 

 

 

 

c)  

 

 

Figure 2.4 a) Signals without normalization and offset correction, b) After difference 

formation and offset correction of the current pairs, c) After normalization 

To compensate for possible shifts on the Y-axis, the curves are normalized. The 

correction factors correspond to the minimum and maximum of the non-

normalized differences. 

 
I

2
I I

∗ I
I I

2
 

(22) 

   

Equation (1.2) is introduced into the difference pairs resulting in the following 

calculation steps: 

 ∆ I ° I ° (2.3) 

 ∆ I ° I ° (2.4) 
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∆ I ∗ cos α  

π
2

cos α    
(2.5) 

 
∆ I ∗ cos α  

3π
4

cos α  
π
4

 
(2.6) 

Equation (2.6) can be simplified as follows: 

 ∆
I

cos  α  
3π
4

cos α  
π
4

  
(2.7) 

Using the addition theorem  cos 𝑥 1  cos 2x  results in: 

 ∆
I

1
2

1 cos 2α  
2 ∗ 3π

4

 
1
2

1 cos 2α  
2π
4

 

(2.8) 

 

Using the theorem  cos x cos y 2sin ∗ sin  follows: 

 
2 ∗ ∆  

I
2 ∗ sin

2α
2 ∗ 3π

4  2α
2π
4

2

∗ sin

2 ∗ 3π
4

2π
4

2
 

(2.9) 

 ∆
I

sin 2α π ∗ sin
π
2

 
(2.10) 

 ∆

I ∗ sin
π
2

sin 2α π  
(2.11) 

Applying the inverse function of the sin to the equation (1.11), we can solve the 

required angle α: 
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arcsine

∆

I ∗ sin 
π

2  
2α π 

 

(2.12) 

 
α

1
2

arcsine
∆

I ∗ sin π
2

π  
 

(2.13) 

Since sin 1 it follows for α45: 

 
α

1
2

arcsine
∆
I

π  
(2.14) 

By a similar calculation, it follows for α0: 

 
α

1
2

arcsine
∆
I

π
2

 
(2.15) 

As shown in Figure 2.4 (c), due to the restriction of the arcsine function, the range 

of α0 is limited to values between 0° and 90°, and the range of α45 is limited to 

values between 45° and 135°. To cover the range of values between 0° and 180°, 

a case distinction is required as follows and is illustrated in Figure 3[7]:  

 Range 0° to 45°: Both differences are negative. 

 
    α

1
2

 arcsine
∆
I

 
π
2

   
(2.16) 

 
α

1
2

arcsine
∆  

I
 

(2.17) 

 (2) Range 45° to 90°: 𝛥0 is positive and 𝛥45 is negative. 

 
α

1
2

 arcsine
∆
I

 
π
2

 
(2.18) 

 
  α

1
2

arcsine
∆
I

π  
(2.19) 

 (3) Range 90° to 135°: Both differences are positive. 
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α

1
2

arcsin
∆
I

3π
2

 
(2.20) 

 
   α

1
2

arcsin
∆
I

 π  
(2.21) 

 (4) Range 135° to 180°: 𝛥0 is negative and 𝛥45 is positive. 

 
α

1
2

arcsin
∆
I

3π
2

 
(2.22) 

 
      α

1
2

arcsine
∆  

I
2π  

(2.23) 

 

 

 

 

 

 

Figure 2.5 Case distinction for angle calculation 

For the range from 180° to 360° the same case distinctions apply. 

As can be seen from equations (2.16)- (2.23) the extraction of the rotation angle 

from the POLDI sensors requires the calculation of divisions and the arcsin 

function. The theoretical basis for the implementation of these mathematical 

expressions in hardware is based on the CORDIC algorithm which is described 

in the next chapter. 

 

 

 

 

 



28 
 

3 Signal processing concepts 

As it became clear in the previous chapter, the calculation of the rotation angles 

requires the implementation of various mathematical operations, such as 

multiplication and division, and the evaluation of trigonometric inverse functions 

in the FPGA.  

There are different realization possibilities. In this project, emphasis is given to a 

simple solution which requires only a small amount of hardware. Therefore, the 

CORDIC algorithm is used for the realization of the mathematical operations and 

functions mentioned above, since this algorithm allows an implementation based 

on addition/subtraction and shift operations. 

In this chapter, the theoretical basics of the CORDIC algorithm and the selected 

method for computing the division and the arcsine function using the CORDIC 

algorithm in Verilog and the implementation on the FPGA are explained. 

3.1 CORDIC algorithm 

3.1.1 Basic idea and concepts 

CORDIC is the abbreviation of COrdinate Rotation DIgital Computer and was 

introduced by Jack. E. Volder [1] as serial arithmetic or the calculation of 

trigonometric functions. In 1971 J.S. Walther [6] extended Volder’s algorithm in 

such a way that the computation of all elementary functions became possible 

nowadays. Besides the serial architecture further implementation approaches 

exist like, for example, the iterative, the combinatorial as well as the pipelined 

CORDIC architecture. In the following the mathematical background of the 

classical CORDIC according to Volder is explained. 

The idea behind the CORDIC algorithm is the rotation of a vector by multiplying 

it by a sequence of constant angles. For these multiplications, only factors are 

used which are a power of the number two. Thus, these multiplications can be 
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expressed in binary arithmetic with shifts and additions, which avoids the 

requirement of a general multiplier circuit. 

The algorithm starts from a vector (x0, y0) which, as can be seen in Figure 5.1, 

rotates around the origin of a Cartesian coordinate system by the angle φ.  

A source vector (x0, y0) can be described by polar coordinates in this Cartesian 

coordinate system as follows: 

 x r ∗ cos α  (3.1) 

 y r ∗ sin α  (3.2) 

 

 

 

 

 

Figure 3.1 Cartesian coordinate system showing a vector (x0, y0) rotated by the angle phi to 

the vector (xn,yn) 

For the desired vector (xn, yn) the following equations can be set up: 

 x r ∗ cos α φ  (3.3) 

 y r ∗ sin α φ  (3.4) 

By applying the addition theorems for sine and cosine and substituting, the defi-

nition of the initial coordinates according to equations (3.1) and (3.2) follows: 

 
 x r ∗ cos α ∗ cos φ r ∗ sin α ∗ sin φ  

x cos φ y sin φ  

(3.5) 

 y r ∗ sin α ∗ cos φ r ∗ cos α ∗ sin φ  

y cos φ x sin φ  

(3.6) 

By factoring out cos (φ), the equations can be written by means of a tangent. 
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 x cos φ  x y ∗ tan φ  (3.7) 

 y cos φ  y x ∗ tan φ  (3.8) 

The CORDIC algorithm only angles 𝜑 are chosen whose tangent can be 

represented by a power of two. Hence, the following relationship applies: 

 tan φ 2 ⟺  φ arctan 2 , i ∈ ℤ  (3.9) 

As a result, the multiplication by tan (φ) can be performed by a shift operation. 

To circumvent the restriction to discrete elementary angles introduced by the 

above relation rotation by an arbitrary angle is generated by a sequence of 

elementary rotations which reaches sufficient accuracy.  Additionally, a sign 

variable di = ±1 is introduced to allow the rotations in both directions. Each 

rotation step i is then calculated by the following equation set. 

 x cos φ  x y  ∗ d  ∗  2  (3.10) 

 y cos φ  y x  ∗ d  ∗  2  (3.11) 

In general, for any angle the following equations apply. 

 cos φ cos φ   (3.12) 

 φ arctan tan φ   (3.13) 

Since the cosine is an even function, the sign does not play a role in the scaling. 

Thus, the cosine term in equations (3.10) and (3.11) can be replaced by the 

following expression: 

 cos φ cos arctan 2 k   (3.14) 

By substituting equation (3.14) in equations (3.10) and (3.11) it follows: 

 x k  x y  ∗ d  ∗  2   (3.15) 

 y k  y x  ∗ d  ∗  2   (3.16) 

From this follows the general relationship describing the rotation to an arbitrary 

angle by a sequence i of elementary angles 𝜑  
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x k ∗  x y  ∗ d  ∗  2  

 
(3.17) 
 

 
y k ∗ y x  ∗ d  ∗  2  

 
(3.18) 

The k factors are then grouped and treated seperately from the remaining 

expressions for example for the first N values of the Kk product the following 

expression results. 

 
K k  

 
(3.19) 

Ki is the so-called scaling factor. According to [5], to avoid multiplications during 

the iterations, Ki can be neglected in each rotation step and only applied for 

scaling of the final result. This results in the simplified calculation step rule: 

 x x y  ∗ d  ∗  2   (3.20) 
 

 y y x  ∗ d  ∗  2   (3.21) 

After N iteration steps the following intermediate result is obtained as an 

approximate solution: 

 
x

1
K

x ∗ cos φ y  ∗ sin φ   (3.22) 

 
y

1
K

y ∗ cos φ x  ∗ sin φ  
(3.23) 

With this approach, at the end of the calculation the results xN and yN only have 

to be multiplied once by KN-1 instead of calculating the factor ki in each step. The 

scaling factor KN can be calculated in advance based on the number of iteration 

steps. The KN factor can be calculated by the following expression: 
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K cos arctan 2

1

1 tan arctan 2

1

1 2
    

(3.24) 

This value can be stored as constants in the system. For large values of N the 

scaling factor converges to the value of 0.6073 as the number of iterations goes 

to infinity [8, p.134]:  

 
k lim

→
k 0,60725294  (3.25) 

The numerical values of the scaling factor are approaching this limit rapidly for 

a low number of iterations N. Table 3.1 shows the first 10 values of the scaling 

factor and the relative deviation of the limit value according to equation (3.25) 

from these values. 

Table 3.1 Error due to the approximation of the scaling factor with the limit value 

N K  Deviation K 

1 0,632456 4.1504% 

2 0,613572 1.0407% 

3 0,608834 0.2605% 

4 0,607648 0.0652% 

5 0,607352 0.0164% 

6 0,607278 0.0042% 

7 0,607259 0.0011% 

8 0,607254 0.0003% 

9 0,607253 0.0001% 

10 0,607253 0.0001% 

It can be seen that even with a small number of iterations, the deviation is 

negligible. Thus, a calculation of the scaling factor can usually be omitted and 

instead the limit value for N → ∞ can be used as a good approximation. 
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A total rotation about angle φ can be decomposed into a sequence of N elementary 

rotations with the corresponding direction di: [4] 

 
φ d  ∗ φ    where tan φ  2    and  d ϵ 1, 1   (3.26) 

The decision vector di with the signs of the individual rotations is different for 

each total rotation angle φ. The previous determination of the vector would result 

in an additional calculation and storage effort. To avoid this, a further auxiliary 

variable zi+1 is introduced to the two equations (3.15) and (3.16) which allows to 

keep track of the total rotation angle over several steps with the following 

equation: 

 
z z  d  ∗   arctan 2   (3.27) 

and is initialized with the total angle 

 z φ  (3.28) 

The determination of the elementary decisions for di, i.e. add or subtract for the 

next iteration step is made on the basis of the sign of zi. It applies: 

     d
1    when    z 0
1   when    z  0  (3.29) 

By this procedure implicitly after each step, the total rotation is compared with 

the desired value φ and the next step towards the desired rotation is determined. 

Based on these considerations, the CORDIC algorithm can be summarized as 

follows. For the calculation of the rotation of a vector (x0, y0) around the angle φ 

the following calculation rules are used: 
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 x x y  ∗ d  ∗  2
y y x  ∗  d  ∗ 2

       z z  d  ∗ arctan 2
 

(3.30) 

 
                   where   d

1    when    z 0
1   when    z  0 

K cos arctan 2
1

1 tan arctan 2

1

1 2
    

 

3.1.2 Generalization 

The CORDIC algorithm can also be represented in matrix form: 

 
𝑥
𝑦
𝑧

1
𝑑 𝜑

0

𝑚 ∗ 𝑑 ∗ 𝜑    
1
0

0
0
1

0
0

    𝑑 𝜑
.

𝑥
𝑦
𝑧
1

  (3.31) 

This approach was generalized by Walther [6], who defined specific values for m 

in the case of circular, linear, and hyperbolic transformations. This results in the 

following calculation rules for the iterations in the three possible cases: 

 Circular (m = 1) 

 x x y  ∗ d  ∗  2
y y x  ∗  d  ∗ 2

       z z  d  ∗ arctan 2
  (3.32) 

 Hyperbolic (m = -1) 

 x x y  ∗ d  ∗  2
y y x  ∗  d  ∗ 2

          z z  d  ∗ arctanh 2
  (3.33) 

 

 Linear (m = 0) 
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 x x                               
y y  x . d . 2        
z z d . 2               

  (3.34) 

The initial values and the determination of the sign depend on the function which 

is to be calculated and on the mode in which the CORDIC is used. Furthermore, 

it is to be noted that for the hyperbolic variant in equation (3.33) with i = 0 the 

undefined expression arctanh(1) results. Therefore, for this mode, the iteration 

starts at i =1, while for the other two modes it starts at i = 0. The resulting scaling 

factors for the various values of m and rotation angles φi of the individual iteration 

steps are summarized in Table 3.2. 

Table 3.2 Scaling factors for the generalized CORDIC [8, p. 18]. 

mode Rotation angle Scaling factors Scaling factor 

limit 

m 𝜑  𝑘  𝑘 lim
→

𝑘  

 

1 

 

arctan 2   
cos arctan 2

1

1 2
 

 

0,607253 

 

0 

 

2   
1 1 

 

1 

 

-1 

 

arctanh 2   
cosh arctan ℎ 2

1

√1 2
 

 

1,207497 

Depending on the mode, the CORDIC algorithm can be used to calculate a whole 

range of functions. Linear mode (m=0) allows multiplication and division, 

circular mode (m=1) can perform trigonometric functions and inverse 

trigonometric functions for given arguments. Moreover, functions such as 

cosh(φ) and sinh(φ) can be calcualted in hyperbolic mode (m = -1) of the 

CORDIC algorithm. 
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In the following section the procedure for the calculation of functions, with the 

rotation mode and vectoring mode is explained. 

3.1.3 Application of the CORDIC algorithm for the calculation of functions 

The CORDIC rotator is normally operated in one of two modes: the rotation mode 

and the vectoring mode. In the rotation mode, the input vector is rotated by a 

defined angle φ (given as an argument), while in the vectoring mode the input 

vector is rotated until it is as close as possible to the x-axis while the angle 

required to make that rotation is recorded. Based on these considerations, the 

CORDIC algorithm is summarized as follows.  

3.1.3.1 Rotating mode in circular mode 

For this calculation, a suitable start vector is selected and rotated by the angle φ. 

After a sufficiently large number of iteration steps, the function values for φ can 

be derived from the approximate result. A simple calculation results for the unit 

vector (x0, y0) = (1, 0) as the starting vector (see Figure 3.2). The starting value 

for z corresponds to the total rotation angle, i.e. z0 = φ.  

 

Figure 3.2 Concept of the rotating mode 

From equation (3.22) and (3.23) it follows for the circular mode with this starting 

vector: 

 
x

1
k

. cos φ   (3.35) 
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y

1
k

. sin φ  
(3.36) 

Thus, all elementary trigonometric functions of the rotation angle φ can be 

determined directly from the coordinates after n iterations: 

 
cos φ k . x   (3.37) 

 sin φ k . y   (3.38) 

 tan φ
 y
 x

           (3.39) 

 cot φ
x  
y

           (3.40) 

3.1.3.2 Vectoring mode in circular mode 

The vectoring mode is virtually an inversion of the rotation mode. In rotation 

mode, a start vector is rotated by a defined angle and the coordinates of the 

iteratively determined result vector are used to determine the trigonometric 

function for the angle.  In contrast, with the vectoring mode, the start and target 

vectors are specified and the required angle of rotation is calculated. Therefore, 

the vectoring mode is suitable for calculating the different inverse trigonometric 

functions depending on the definition of the start and target vector. Since the 

arcsine function is used in this project, only this function is explained in the 

following. 

3.1.3.2.1 Arcsine function 

For the calculation of the arcsine, a start vector, which lies on the x-axis, is rotated 

until a given position is reached. The function works by seeking to minimize the 

y component of the residual vector at each rotation. The sign of the residual 

component is used to determine which direction to rotate next. When the angle 

accumulator is initialized with zero, it will contain the traversed angle at the end 
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of the iterations. The starting point for this consideration is that after the rotation 

by the angle φ the coordinates are given by: 

 
x |r|. cos φ  

(3.41) 
 y |r|. sin φ  

If a unit vector is rotated with |r| = 1, the y-coordinate after the final iteration 

corresponds to the sin of the rotation angle. It thus corresponds to the argument ξ 

∈ [-1 ; 1] , for which the arcsine is to be determined. Therefore, for the calculation, 

a unit vector is rotated from the x-axis until its y-coordinate corresponds to this 

argument (see Figure 3.3). 

 

Figure 3.3 Concept of vectoring calculation for arcsine 

This procedure is realized by continuing the rotation according to the deviation 

of yi to this argument. Thus, the iteration rule is:  

 x x y  ∗ d  ∗  2
y y x  ∗  d  ∗ 2

       z z  d  ∗ arctan 2
 

(3.42)  where    d
1    when    ξ y ∗ K 0

   0     when    ξ y ∗ K 0
1   when     ξ y ∗ K 0

 

 
    x 1 ,      y z 0 
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At the end of the iteration we get: 

 

y
ξ

k
 

(3.43) 

 z φ arcsine ξ  

The calculation can be simplified by using the initial value Kn-1 for x0. The 

following Table 3.3 illustrates the calculation of Arcsine (0,9) over 10 iteration 

steps. The individual values of the calculation can be taken from this Table. The 

exact value is Arcsine (0.9) = 64.158072°. 

Table 3.3 Calculation steps for Arcsine (0.9) with the CORDIC algorithm 

i 2-i Arctan(2-i) ki xi yi di zi 

0 1 0.785398 0.70717 0.607253 0 1 0° 

1 0.5 0.463648 0.894427 0.607253 0.607253 1 45.0000° 

2 0.25 0.244979 0.970143 0.303626 0.910879 ‐1 71.60135° 

3 0.125 0.124355 0.992278 0.531346 0.834973 1 57.55799° 

4 0.0625 0.062419 0.998053 0.426975 0.901391 ‐1 64.68662° 

5 0.03125 0.031240 0.999512 0.483312 0.874705 1 61.10847° 

6 0.015625 0.015624 0.999878 0.455977 0.889809 1 62.89929° 

7 0.0078125 0.007812 0.999969 0.442074 0.896933 1 63.79492° 

8 0.00390625 0.003906 0.999992 0.435067 0.900387 ‐1 64.24276° 

9 0.001953125 0.001953 0.999998 0.438584 0.898688 1 64.01883° 

10 0.0009765625 0.000977 1.000000 0.436828 0.898688 1 64.13079° 

         

The calculation of the Arcsine as state above gives the correct result for 

arguments -1 < ξ < 1, but the error increases strongly for arguments larger than 

0.98. According to [5], the error is due to the scaling of the vector to be rotated, 

since it becomes shorter than the reference vector (ξ) and thereby wrong decisions 

are made when determining the rotation direction (see Table 3.4). 
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Table 3.4 Calculation steps for Arcsine (0.99) with the CORDIC algorithm 

i 2-i Arctan(2-i) ki xi yi di zi 

0 1 0.785398 0.70717 0.607253 0 1 0° 

1 0.5 0.463648 0.894427 0.607253 0.607253 1 45.0000° 

2 0.25 0.244979 0.970143 0.303626 0.910879 1 71.60135° 

3 0.125 0.124355 0.992278 0.075907 0.986786 1 85.64471° 

4 0.0625 0.062419 0.998053 -0.04744 0.996274 -1 92.77334° 

5 0.03125 0.031240 0.999512 0.014826 0.999239 -1 89.19519° 

6 0.015625 0.015624 0.999878 0.046052 0.998776 -1 87.40438° 

7 0.0078125 0.007812 0.999969 0.061658 0.998057 -1 86.50875° 

8 0.00390625 0.003906 0.999992 0.069455 0.997575 -1 86.06091° 

9 0.001953125 0.001953 0.999998 0.073352 0.997304 -1 85.83698° 

10 0.0009765625 0.000977 1.000000 0.0753 0.997303 -1 85.72502° 

 

The exact value is Arcsine (0.99) = 81.89039°. The approximation of the 

CORDIC algorithm gives rise to a deviation 4-degree deviation with calculation 

in the CORDIC algorithm. 

 To make the calculations of the Arcsine accurate for all -1≤ ξ ≤ 1, the Double 

iterative CORDIC algorithm [4] can be used. Unlike the conventional CORDIC, 

the Double Rotation CORDIC algorithm scales the input argument and it gives 

the correct result over the complete range of values of the Arcsine. In the 

following section the procedure for the calculation of the Arcsine functions, with 

the Double Rotation CORDIC algorithm is explained. 

3.1.3.2.2  Double Rotation CORDIC algorithm 

The double Rotation algorithm for computing the Arcsine function is given by 

the following set of equations:  
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⎩
⎪
⎨

⎪
⎧ x

y    
1

d  . 2
d  . 2

1
x
y

 z z  2. d  . arctan 2

 t t  t  . 2  

 

(3.44) 

 
 
x 1 ,      y z 0,   t abs t  

In this algorithm, d  is chosen such that d sign x  when t y 0 else 

d sign x . 

By doing this modification, the vector (xi, yi) will always rotate in the first and 

the second quadrant and yi and zi will not get negative values. 

According to Formula (3.45), the initial vector (x0, y0) should be a unit vector on 

the x-axis. As is shown in Figure 3.4, in the first iteration, it is sure that d0 =1 and 

(x0, y0) will rotate by an angle of 2*tan-1(2-0)= 90° counterclockwise, so (x1,y1) is 

a vector on the y-axis. While in the second iteration, d1 = -1 and (x1, y1) will rotate 

by an angle of 2* tan-1(2-1) clockwise, since the destination angle is in the range 

of [-90°, 90°]. According to the above analysis, the first two 90° rotations always 

happen in the same way and as a result (x2, y2) will be always the same vector 

independent of the input argument. 

 

Figure 3.4 The rotations of the first two iterations 
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Unlike the conventional CORDIC, the Double CORDIC does not scale the input 

vector but the input argument. This algorithm delivers the correct result over the 

complete range of values of the Arcsine.  

The main advantage of the double rotation approach is that due to the two 

subsequent rotations the square root of the scaling factor vanishes and becomes 

l/cos2 (tan-1 2-i) =1/(1+2–2i ). A multiplication by the denominator of this term 

reduces to an addition and a shift. Another advantage is that the convergence 

domain of the algorithm becomes larger. It gives a correct result 

for φ 𝜖 2∑ tan 2 , 2∑ tan 2    3.48657, 3.48657 ; 

therefore, we can compute sin-1 t for any t ϵ 1, 1 .  

3.1.3.3 Function calculations in linear mode 

The CORDIC algorithm in linear mode is able to calculate multiplications in 

rotation mode and divisions in vectoring mode. One benefit of the linear mode is 

the simple scaling factor kn = 1. As a result, no scaling corrections are required 

and no errors arise due to an insufficient scaling factor approximation.  

The rotation calculation in linear mode, starts from the start vector (xn, 0) on the 

x-axis and results into the following vector at the end of the iteration [8, p.13]: 

 
                                          

 

⎩
⎪
⎨

⎪
⎧

x x                                          
y y x  ∗  z x  ∗  z

z z  d ∗ 2  0   

    

  (3.45) 

Here z0 is not freely selectable, since the sum of the partial displacements is 

limited. It applies: 

 
lim
→

2 2 

 

(3.46) 
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Even in the case that all partial rotations have the same direction, i.e. all di have 

the same value, the total displacement cannot be greater than two. The 

approximation of zn to zero according to equation (3.45) is therefore only possible 

if the condition 

 

|𝑧 | 2 2 (3.47) 

is satisfied [8, p. 13].  

The vectoring calculation applys a rotation of the start vector (x0, y0) towards the 

direction (xn, 0). After n steps the following result is obtained in linear mode: 

 
x x   (3.48) 

 
z d  . 2  

y
x

 (3.49) 

In this case, the application of the CORDIC algorithm results into the calculation 

of the quotient of the components of the inital vector (x0, y0). The constraint 

according to equation (3.46) leads to the following condition for a correct 

calculation result: 

 
y
x

 2 (3.50) 

The general iteration rule for vectoring calculation in linear mode is: 

 
                                          

 

x x x               
y y x  . d  . 2
z z  d  . 2      

    

 

(3.51) 

 
    where   d

1    when    y 0
0     when     y 0

1     when   y 0
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 x 0 ,    z 0 

The advantages of the CORDIC divider are low latency and less hardware 

complexity compared to the other fast dividers. Accuracy is also a concern where 

high precision is needed. 
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4 Light Source and Polarizer 

In the following chapter, an overview of components and devices of tools used in 

the measurement setup of this project is given. 

4.1 Hyperchromator  

The Hyperchromator is a high throughput monochromator designed for the 

EnergetiqEQ-99X light source. Due to its extremely high radiance, the EQ-99X 

is especially well suited for generating monochromatic light in the wavelength 

range 220 nm–2200 nm (UV/VIS/NIR). Bandwidths of 1 nm to 10 nm are 

possible. The light is collected directly from the plasma of the lamp with an 

aperture of up to f/1.5 without using an additional entrance slit. This makes this 

tunable light source very efficient. The output side has been designed with a very 

flexible opto-mechanical interface. This allows for a multitude of illumination or 

light coupling options using standard catalog components, rendering the 

integration of the Hyperchromator into your setup hassle free and straight-

forward. Possible configurations include fiber coupling, collimated or free-beam 

output. The wavelength is selected via USB/RS-232 interface using low-level 

command sequences or high-level implementation from a PC and an intuitive 

GUI. The low-level control commands are based on the protocol of the motor 

controller. Thereby binary command sequences are transmitted, which are 

assembled according to a certain scheme. With some lines of code, it is possible 

to generate the necessary sequences for variable commands, e.g., to approach 

different wavelengths, also dynamically. But wavelength calibration has to be 

handled, i.e., by reading in a calibration file, interpolating wavelengths into motor 

positions and also by setting the order filters. In the high-level implementation, 

only the wavelength is passed while the calibration is processed automatically 

[11]. In Figure 4.1, the Mountain Photonics Hyperchromator is depicted with the 

Energetiq EQ-99X light source mounted on it. 
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In this work, the monochromatic light source is connected to an optical fiber and 

a collimator. The light is decoupled from the light source via an optical fiber. At 

the end of the fiber there is a collimator which is used to produce a parallel beam 

of light allowing for better focus, accuracy, and efficiency. The control of the 

light source is integrated into a self-written software framework based on Qt 

which allows for automated measurements to simplify recurring measurements at 

e.g. different wavelengths that will be explained in the 10.1.5.7 on GUI later. 

 

Figure 4.1 The Mountain Photonics Hyperchromator with the mounted Energetiq EQ-99X 

light source [11] 

4.2 Polarizer  

To polarize the light emitted from the light source during automated 

measurements with controllable polarization angle, a Double Glan-Taylor Calcite 

Polarizers and a motorized precision rotation stage bundled with a DC Servo 

Motor Driver (KPRM1E/M) are used which allows the rotation angle to be 

defined via the software interface. The units of measurement used for the 

specifications or dimensions of the rotation stage such as length, diameter, or any 

other relevant parameters are provided in the metric system (e.g., millimeters, 

centimeters). The DGL10 polarizer can be mounted to a  KPRM1E/M rotation 
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mount by using a SM1L20 lens tube. These devices are explained in more detail 

in the following. 

4.2.1 Double Glan-Taylor Calcite Polarizers (DGL10) 

 The Double Glan Taylor Polarizers offer a solution for high-quality polarization 

with extinction ratios greater than 100 000:1 for laser beams in the 0.35-2.3 μm 

wavelength range. These triple prism, air-spaced polarizers are made from the 

highest optical grade of calcite. The triple prism design of the polarizer gives it a 

larger field of view (FOV) than standard Glan-Taylor polarizers. Unpolarized 

light enters the polarizer and is split at the two internal interfaces between 

crystals. The ordinary rays are reflected at each interface, causing them to be 

scattered and partially absorbed by the polarizer housing. The extraordinary rays 

pass straight through the polarizer, providing a polarized output. Unlike standard 

Glan-Taylor designs, this double Glan-Taylor prism also has a symmetric 

FOV. This polarizer is only 33 mm long and features a large clear aperture that 

measures 9 mm x 9 mm. [12] 

4.2.2  Motorized Rotation Stage and Mount 

The KPRM1E/M is a small, compact, DC servo motorized 360° rotation mount 

and stage that accepts optics with a diameter of 1 inch (Ø1") optics and SM1-

threaded components. The device serves as a companion for achieving smooth, 

continuous motion which can be automated through a software interface. It 

establishes a connection to a computer via USB, allowing control through the 

transmission of serial commands in software over the USB connection. The user 

can measure the angular displacement by using the Vernier dial in conjunction 

with the graduation marks that are marked on the rotating plate in 1° increments. 

This rotation stage/mount is also equipped with a home limit switch to facilitate 

automated rotation to the precise 0° position, allowing absolute angular 

positioning thereafter. The limit switch is designed to allow continuous rotation 

of the stage over multiple 360° cycles with rotational velocity of 25 degree per 
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second. The central aperture of the KPRM1E/M rotation mount has a standard 

SM1 internal thread, for compatibility with a range of optics [13]. Figure 4.2 

shows the Mounted DGL10 Polarizer in a SM1L20 Lens Tube and PRM1 

Rotation Mount. The polarized light which passes the crystal should fall on a 

sensor chip which in this project is placed on a PCB. 

 

Figure 4.2 DGL10 Polarizer Mounted in an SM1L20 Lens Tube and PRM1 Rotation Mount 

[12] 

4.2.3 K-Cube™ Brushed DC Servo Motor controller (KDC101)  

The K-Cube™ Brushed DC Servo Motor Controller is a specific type of motor 

controller designed to operate and control the movement of brushed DC servo 

motors offered by Thorlabs, a company specializing in photonics and 

optomechanical systems. It can be used to drive a motorized rotation stage/ mount 

(KPRM1E/M). 

The controller is designed to provide precise control over the position, velocity, 

and acceleration of a brushed DC servo motor. It accepts various input signals, 

such as analog voltage or digital commands, to regulate the motor's operation. It 

offers features such as closed-loop feedback, PID control algorithms, and built-

in motion profiles for smooth and accurate manual and automatic motor control. 

Manually adjusting motor positions is done using the top panel controls (velocity 

control wheel). With its compact size and user-friendly interface, the K-Cube 
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Brushed DC Servo Motor Controller offers convenient integration into 

experimental setups or industrial applications that require precise motor control. 

It offers a fully featured motion control capability including velocity profile 

settings, limit switch handling and “on the fly” changes in motor speed and 

direction. It can be controlled remotely through computer interfaces, enabling 

automation and compatibility with software-based control systems. 

Each unit contains a front-located power switch that, when turned off, saves all 

user-adjustable settings.  

The KDC101 provides a USB or an RS-232 interface to communicate with the 

host PC. The electrical interface within the Thorlabs controllers uses a Future 

Technology Devices International (FTDI) FT232BM USB peripheral chip to 

communicate with the host PC. This USB interfacing chip provides a serial port 

interface to the embedded system (i.e., Thorlabs controller) and USB interface to 

the host control PC.  

USB connectivity provides easy 'Plug-and-Play' PC-controlled operation with a 

legacy APT (Advanced Positioning Technology) software package which allows 

the user to quickly set up complex move sequences with advanced controls made 

possible via the ActiveX programming environment. For example, all relevant 

operating parameters are set automatically by the software for Thorlabs stage and 

actuator products. Furthermore, this programming library is compatible with 

many development tools such as LabView, Visual Basic, Visual C++, C++ 

Builder, LabWindows/CVI, Matlab and Delphi.  

The overall communications protocol is independent of the transport layer (for 

example, serial communications could also be used to carry commands from the 

host to the controller. Before any PC USB communication can be established with 

a Thorlabs controller, the client program is required to set up the necessary FTDI 

chip serial port settings used to communicate to the Thorlabs controller embedded 

system. The low-level communications protocol and commands used between the 
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host PC and controller units within the Thorlabs motion control helps to write 

applications to interface to the Thorlabs range of controllers without the con-

straints of using a particular operating system or hardware platform. Communi-

cations parameters are fixed at:  

• 115200 bits/sec  

• 8 data bits, 1 stop bit  

• No parity  

• RTS/CTS Handshake  

 
Figure 4.3 K-Cube Brushed DC Servo Motor controller (KDC101) 
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5 Sensor Readout Electronics 

As a preliminary work, design and development of boards with readout circuits 

for the Poldi sensor manufactured by AdvICo Microelectronics was carried out. 

The Poldi sensor provides a voltage signal which is proportional to the 

photocurrent of the integrated diodes. To digitalize these analog output voltages, 

analog-to-digital converters are utilized.  Due to the diode reverse currents, a 

constant offset current can be superimposed on the signal-dependent 

photocurrent. In addition, the feedback resistors of the transimpedance amplifiers 

integrated in the sensor may vary, resulting in different output voltages for the 

same photocurrent values. To correct these effects, Multiplying Digital to Analog 

Converters (MDAC) were employed to influence various parameters of the 

circuit. The DAC (AD5544) is based on a resistor network and has the task of 

converting the input voltage into an output current. The conversion factor is 

determined by the DAC setting. Another channel of the DAC is used to generate 

a negative output current of variable magnitude, which can be subtracted from 

the signal-dependent current. 

The operational amplifier (AD8656) is connected as a transimpedance amplifier, 

whereby for the feedback, a resistor integrated in the Digital to Analog converter 

is used. The transimpedance amplifier converts the output current of the DAC 

back into a voltage. For the further processing of the measurement signal in the 

FPGA. The voltages are digitized with an Analog to Digital converter (AD7980). 

The digitized data is transferred to the FPGA via a serial interface and used for 

performing angle calculations. 

Since the FPGA is operated with a lower supply voltage than the rest of the 

electronics, the control signals are raised to 5V via a level shifter. A description 

of electronic parts is provided below. 
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5.1 Power Supply and Reference Voltage Board 

This board is responsible for providing the voltage supply and generating 

reference voltages which are required by the Poldi readout circuits. These circuit 

parts were redesigned with Altium Designer and produced as a stand-alone PCB. 

 

Figure 5.1 Circuit diagram for the power supply and reference signals [14] 

5.1.1 Generated voltages and outputs 

The following voltages and output signals are generated on the board designed 

for the power supply [14]: 

 “AGND” → Ground (terminal block 2 - pin 1) 

 “+5V” → The first voltage regulator converts the input voltage into 5V. 

(Terminal block 2 - Pin 2) 
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  “+2V5OUT” → The IC2 converts the 5V voltage to 2.5V.(Terminal block 

2 - Pin 3) 

 “3V3ANA” → The IC3 converts the 5V to 3.3V. (Terminal block 2 - Pin4) 

  “RELVTIA” → is 2.5V higher than “VREFTIA”. (Terminal block 1 - pin 

1) 

  “1V_DGND” → Ground (terminal block 1 -Pin2). 

 “VREFTIA” → Reference voltage of the POLDI sensor, which is 1V and 

used as the Ground voltage of many circuits of the readout chain. 

(Terminal block 1 - pin 3) 

 “RELNEGREF” → Reference voltage which is 0.375V above the global 

ground voltage, but 0.625V below VREFTIA (-0,625V). This voltage is 

generated by the AD780 component. (Terminal Block 1 - Pin 4) 

  “1V_LOCAL” → Reference voltage of 1V generated by the AD510. 

(Terminal block 1 - pin 5) 

5.1.2 Components of the Board 

The components of the board are as following: 

5.1.2.1 Shunt Voltage Reference 

A Shunt Voltage Reference has a similar function to a Zener diode but generates 

a much more precise output voltage. The Shunt Voltage Reference is needed for 

the generation of the reference voltage of 1V, which is called “1V_LOCAL” in 

the original circuit diagram. Specifically, this project uses the ADR510 device, 

which provides 1.0V. To ensure a consistent flow of current through the shunt, a 

series resistor RBIAS is employed. This resistor allows a controlled current 

ranging from 100µA to 10mA. To prevent loading of the shunt output, an 

operational amplifier with high input resistance is connected to the reference 
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signal “1V_LOCAL”. This configuration ensures minimal input current into the 

operational amplifier, maintaining the integrity of the shunt output voltage. ICs 

linked to the reference potential “1V_LOCAL” operate with a supply current 

under 1mA. By selecting a 1kOhm series resistor (RBIAS), a total load current 

(IL) of 4mA is achieved, falling within the specified range. [14] 

5.1.2.2 Voltage Regulator 

Voltage regulators are used to stabilize electrical DC voltages and to compensate 

for fluctuations in the input voltage and the load current. Three voltage regulators 

are employed to generate the output voltages of 2.5V, 3.3V and 5V. 

Each regulator has a total of five pins (“IN”, “GND”, “OUT”, “BYP”, “EN”). 

The pin “IN” corresponds to the input voltage. A 1uF capacitor is connected to 

this pin for all three regulators, with its second electrode connected to GND. This 

capacitor serves as an energy reserve when the load current increases, the voltage 

regulator needs time to react due to its limited bandwidth. This delay causes 

voltage drops or rises, depending on load changes. To address this, a capacitor of 

2.2μF is connected to the controller output pin “OUT”, helping to reduce voltage 

spikes by charging and discharging during load fluctuations. 

For the last controller with the instance name IC3 no bypass was used, which 

allows the device to regulate the 3.3V output faster. 

“BYP” pin is used to reduce the output noise, an external 470pF capacitor is 

connected to the reference bypass.  

The “EN” pin is used to activate or deactivate the controller. If the input voltage 

is above 2V, the controller is activated. Below 2V it is automatically switched off 

internally. The “EN” is connected to “IN”, therefore the controller is always 

activated as soon as the input voltage is above 2V [16]. Figure 5.1 shows the 

circuit diagram of voltage regulators. 
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Figure 5.2 Extract of the circuit diagram with the wiring of the LDO voltage regulator ICs 

[14] 

5.1.2.3 Operational Amplifier TSV914IDR 

The TSV914AIDR component is a quad-channel operational amplifier (opamp), 

specifically designed for general-purpose applications. It only takes up very small 

input currents and is therefore very well suited for buffering analog voltages. 

Since the readout system of the POLDI sensor requires three operational 

amplifiers (OPs) and the TSV914AIDR component comprises four operational 

amplifiers one additional operational amplifier remains unused in this setup.; one 

is dedicated to the shunt, while two are employed for generating the 

“RELNEGREF” voltage. [17] 

 

Figure 5.3 Symbol of the TSV914AIDR operational amplifier device [17] 

The operational amplifier “A” in figure 5.3 is wired as an inverting amplifier. The 

output RELNEGREF (-0.625V) is fed back to the inverting input with resistor R1 

of 1kOhm. The voltage RELVTIA, which is supplied by the AD780 voltage 
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regulator, is applied to resistor R62 of 4.02kOhm, which relates to its other 

terminal to the inverting input of the operational amplifier. The non-inverting 

input +IN is connected to the voltage VREFTIA. 

 

Figure 5.4 Circuit diagram for generating the voltage RELNEGREF [14] 

Due to this inverting circuit, the output voltage becomes negative compared to 

VREFTIA when the input voltage is positive. Due to the negative feedback, the 

OP regulates the voltage at the inverting input to the same voltage as at the non-

inverting input VREFTIA and the voltage difference of these two inputs is zero. 

Therefore, “node S” in figure 5.3 is always close to VREFTIA, i.e. 1V. [9] The 

calculation for the voltage gain A results in: 

A
R1

R62
1kOhm

4,02kOhm
0,25 

4.1  

RELVTIA
RELNEGREF

A
1kOhm

4,02kOhm
2,5 

4.2  

The operational amplifier “B” was combined with the ADR510ARTZ to ensure 

load-independent and precise generation of the VREFTIA and 1V_DGND 

voltages. 
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Figure 5.5 Circuit for generating loadable reference voltages [18]. 

The voltage at the operational amplifier's output is influenced by the external 

circuitry, primarily the choice of resistors. In instances where no resistors are 

employed, an amplification factor of 1 is configured. This configuration 

effectively transforms the operational amplifier circuit into a voltage buffer. 

The voltage between the ADR510, which acts like a Zener diode, and the resistor 

is 1 Volt. If the current ratios were to change, this would lead to a reduction of 

the reference voltage below 1V. By using the operational amplifier, which acts as 

an impedance converter, the output voltage of 1V remains stable as long as a 

connected load does not require more current than the operational amplifier can 

supply. Therefore, the current is supplied by the operational amplifier and not by 

the circuit in front of it. The operational amplifier “C” is wired as operational 

amplifier “B” and has the same function for the output voltage “1V_LOCAL”. 

As operational amplifier “C”, 1V_DGND is provided at the output. 

The operational amplifier “D” has no function, and the inputs are only connected 

to ground. 

The positive 5V supply voltage is connected to VDD, the ground potential to 

VCC. In addition, two capacitors are connected in parallel between VCC and 

GND to filter unwanted interference at high frequencies. Each line has a resistor 

and an inductance. When a rapid load change occurs, this rapid load change is 

also passed through the resistor and inductor, causing the voltage at VDD to drop. 
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These fluctuations in the supply voltage are called ripples. These ripples are 

absorbed by the blocking capacitance, in which the current change is partially fed 

from the capacitance and not via the supply line, so that the voltage drops at the 

resistors and the inductance are smaller and the ripples are smoothed out. Figure 

5.6 illustrates Circuit for generating the voltages VREFTIA and 1V_DGND. 

 

Figure 5.6 Circuit for generating the voltages VREFTIA and 1V_DGND [14] 

5.1.2.4 Voltage Reference AD780BRZ 

The AD780 is a bandgap voltage reference circuit that generates an output voltage 

between 2.5V and 3V. in this project the generated bandgap reference voltage is 

2.5V and requires an input or supply voltage between 4V and 36V. The device is 

a good choice for improving the performance of high-resolution ADCs and 

DACs, as well as for all general-purpose precision reference applications [15]. 

The component is used to generate the “RELNEGREF” and “RELVTIA” 

voltages.  

The voltage “RELVTIA” is 2.5V higher than the voltage “VREFTIA” due to the 

connection of the regulator's GND to “VREFTIA”. The operational amplifier is 

configured as an inverting amplifier with a gain of -0.625. 
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The voltage of -0.625V is referenced to the local ground voltage “VREFTIA” 

which is at 1V. The absolute value of the voltage “RELNEGREF” referred to the 

global ground, is calculated as 1V - 0.625V, resulting in 0.375V. Utilizing a 

4.02K resistor introduces a slight deviation for “RELNEGREF” e.g, -0.622V. 

5.2 Level shifter 

A level shifter is an electronic circuit used to translate signals between different 

voltage levels, ensuring seamless communication between various components 

within a system. It finds widespread use in electronics, facilitating compatibility 

and accurate signal transmission between integrated circuits or components 

operating at varying voltage levels, like converting signals between a 3.3V and 

5V IC. 

The AD5544 is used for digital to analog conversion, serving as a multiplying 

DAC (MDAC). The chip possesses both analog and digital ground connections. 

Maintaining proximity between these ground voltages is crucial to prevent 

undesirable current flow. For instance, if digital ground is 0V and analog ground 

is 1V, undesired current circulates. Balancing the ground involves raising the 

digital ground also to 1V. When driven by an FPGA, the low and high levels of 

0V and 3.3V correspond to -1V and 2.3V respectively, relative to the AD5544's 

digital ground at 1V. This voltage difference can cause current flow which can 

damage the chip. 

The AD5544 operates at 5V and requires a low level of 0V and a high level of 

5V at its digital input pins, However, a high level of 2.4V is also sufficient. The 

FPGA levels are between 0V and 3.3V. If only the ground is set to 1V, the high 

output level of the FPGA is only 2.3V and cannot be recognized as high by 

AD5544. Therefore, A multiplexer (NLASB3157) is employed to adjust the 

voltage levels conveniently. It has a digital select input that can be used to 

determine the output, where 0 sets the output signal to 1V while sets the output 
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signal to 5V with respect to global ground. The select input of the multiplexer is 

connected directly to the FPGA.  

The datasheet specifies that the select input's high level for the NLASB3157 must 

be a minimum of 0.7VCC, while the low level should not exceed 0.3VCC. With 

VCC set at 5V, this implies a high level of 3.5V, surpassing the FPGA's 

capability. To address this, a VCC supply of 4V is chosen for the NLASB3157, 

ensuring the FPGA's 2.8V high level is sufficient to trigger the multiplexer. 

However, this decision limits the maximum switched voltage to 4V with an 

FPGA high signal while the FPGA's low 0V level is adjusted to 1V. This 

configuration results in a voltage swing of 3V which meets the requirement of the 

AD5544 component of 2.4V voltage swing. 

5.2.1 Level Shifter Board Structure 

The design of the level shifter circuit board involves arranging four ICs with their 

corresponding terminal blocks on each side. On the top side, there are three 

terminal blocks with eight pins and one terminal block with four pins, all of which 

are connected to a total of 13 ICs. Among these, twelve are multiplexers 

(NLASB3157) responsible for switching analog voltages. Multiplexers enable 

the sequential switching of multiple signals to a single input. As a result, a 

multiplexer is allocated to each input on the terminal block. One specific 

component, IC5, is the TSV911AIDCKR operational amplifier, utilized here to 

generate a steady 4V voltage output. 
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Figure 5.7 Layout of the level shifter board 

 

 

Figure 5.8 Level shifter circuit diagram in Altium Designer 
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5.2.2 Components of the Level Shifter 

5.2.2.1 Operational Amplifier (TSV911AIDCKR) 

This component serves as a rail-to-rail operational amplifier, functioning within 

a 5V supply voltage. To achieve a four-volt output, a voltage divider divides the 

initial five volts. The operational amplifier operates as a buffer with a gain of one, 

ensuring the voltage of the divider remains stable even under load. To prevent 

any undue load on the voltage divider, a high impedance input operational 

amplifier is employed. 

The TSV911 operational amplifier is chosen with an input current as low as 1-

10pA [19]. 

 

Figure 5.9 Circuit for generating the level shifter levels [14] 

5.2.2.2 Multiplexer NLASB3157DFT2G 

The NLASB3157 is an analog multiplexer/demultiplexer integrated circuit (IC). 

It is designed to switch analog signals between different inputs and outputs. It 

allows selection and routing of analog signals between inputs and outputs, with 

bidirectional capabilities. Figure 5.10 illustrates switching symbol of the 

multiplexer according to the data sheet [20]. 
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Figure 5.10 Switching symbol of the multiplexer according to data sheet [20]. 

As an example, we consider instance IC17 from the circuit diagram (see Figure 

5.11). The FPGA output “JP_SCK_DAC” is connected to the input “SELECT”. 

The “SELECT” signal determines which input channel is switched through. 

When the input signal SELECT is 0, then B0 is connected to A; when it's 1, B1 

is connected to A. This connection also works bidirectionally, but here A is used 

as the output. As described above, when the input signal is 0V, there is a voltage 

of 1V at output A, and at 1V input, there's a 4V output. This principle applies to 

all twelve “NLASB3157DFT2G” components. 

 

Figure 5.11 Multiplexer's component in Altium Designer 
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5.3 Analog to Digital Converter Circuit Board (ADC) 

 

Figure 5.12 Schematic of the Analog to Digital Converter board 

 

Figure 5.13 Layout of the ADC board 
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5.3.1 Components of the ADC board 

5.3.1.1 AD7980 

The AD7980 is a 16-bit Analog to Digital converter (ADC) which is supplied 

with 2.5V from a positive operating voltage VDD. It contains a 16-bit sampling 

ADC and a serial interface port. Furthermore, it features an additional digital 

input/output interface named “VIO” which requires a voltage within the range of 

1.8V to 5V; in this case, 3.3V is applied. The CNV input serves multiple 

functions. Primarily, it converts and selects the interface mode, whether chain or 

CS mode. In CS mode, the SDO pin is triggered when the CNV signal is low. In 

contrast, when operating in chain mode, it samples an analog input, labled as IN+, 

on the rising edge of the CNV signal. This sampling process occurs within a 

voltage range of 0 V to REF relative to DGND, with the corresponding 

complementary input denoted as IN-. The reference voltage, REF, is applied 

externally and can be a voltage between 2.4V and 5.1V relative to DGND. In this 

project, a voltage of 3V is applied to REF. The SDI pin handles serial data input, 

similarly, influencing the interface configuration alongside CNV. If SDI is low 

during a rising CNV edge, chain mode activates. In this state, SDI functions as 

data input, channeling conversion results from multiple ADCs to one SDO line. 

Conversely, if SDI is high at the rising CNV edge, the CS mode is engaged, 

activating serial output signals through SDI or CNV. For the reference input 

voltage, a voltage between 2.4V and 5.1V relative to DGND is supplied to the 

REF input pin. The conversion result is output serially via the SDO output, 

synchronized with the data clock input SCK pin [21]. To protect the circuit from 

interference, an RC element is connected in series with the REF pin. This consists 

of a resistor and a capacitor [14]. Figure 5.14 shows the circuitry of the ADC 

suggested in the data sheet [21]. 
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Figure 5.14 Circuitry of the ADC [21]. 

The following equation can be used to calculate the difference between the 

voltages applied to the “V+” and “V-” pins. 

V   V  ∗  
D 
2

    
5.1  

VIN stands for the difference between the voltages applied to the “V+” and “V-” 

pins. VREF stands for the reference voltage, which in this project is 3 V. N is the 

resolution of the ADC in bits, which in this case is 16, and D is the decimal 

equivalent of the 16 bits obtained with one readout. [21] 

5.3.1.2 AD780 

The AD780 is a Band Gap Reference Voltage, which generates a temperature 

stable reference voltage of 2.5 or 3V from an input voltage between 4 and 36 

Volts. In this project an input voltage of 5V is applied and a reference voltage of 

3V is generated. The reference voltage of 3V is connected to the REF pin of the 

AD7980 device via the RC element. The noise can be extremely reduced by using 

two external capacitors. A load capacitor between output and ground and a 

compensation capacitor C2. C2 should be between the TEMP pin and ground. As 

outlined in the datasheet, optimal stabilization is achieved with 100nF for C2 and 
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100uF for C1. Furthermore, a combination of 22uF and 2.2uF capacitors is 

utilized to further enhance voltage stability. The temperature output pin allows 

the AD780 to be configured as a dependable temperature transducer while 

providing a stable output reference [15]. 

 

Figure 5.15 Circuitry of the bandgap voltage reference [15]. 

5.3.1.3 AD5544 

The AD5544 is a multiplying Digital to Analog converter (MDAC) with an SPI 

control interface operated by an FPGA device that communicates with a PC. The 

DAC AD5544 has four different channels and works with a supply voltage of 2.7 

V to 5.5 V. It outputs currents with a 16-bit resolution. Figure 4.16 shows the 

Schematic diagram of the MDAC device with integrated feedback resistor. 

In combination with a transimpedance amplifier, the correction of the 

amplification and the offset is made possible. The input voltages are “VREFA” 

to “VREFD”, where VREF corresponds to the reference voltage at the input of 

the MDAC, RFB corresponds to the integrated feedback resistor of the 

transimpedance amplifier of 5kΩ DAC. Via a data word (16 bits DAC value) the 

magnitude of the output current can be controlled. A MDAC is a circuit that 

effectively multiplies a digital input value with an input voltage. In this 

configuration, when the digital value is set to zero, the output current “IOUT” is 

also zero. Similarly, when the digital value is set to its maximum, the resulting 
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current at “IOUT” reaches its maximum, corresponding to the reference voltage 

“VREF”. 

 

Figure 5.16 Schematic diagram of the MDAC with integrated feedback resistor [22] 

Figure 5.16 shows interconnection of the MDAC with the operational amplifier 

wired as a transimpedance amplifier [14]. Analog voltages “VREFC” and 

“VREFD” originate from the POLDI sensor, while the reference voltage 

“RELNEGREF” is present at both “VREFA” and “VREFB” due to their 

interconnected pins. 

The MDAC's output currents, namely “IOUTA” and “IOUTC” are connected and 

summed. This addition of currents occurs because these outputs function as 

current sources. Consequently, the currents from channel A (with 

“RELNEGREF”) and channel C (with “OP90”) are combined. A similar 

summation principle applies to “IOUTB” and “IOUTD”combining the current 

from channel B, to which the voltage "RELNEGREF" is applied and the current 

from channel D, to which the voltage of the POLDI sensor “OP0” is applied. 

 

Chain of 
resistors 

Feedback 
Resistor 
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Each output of the AD5544 MDAC is linked to an AD8656 operational amplifier, 

tasked with converting the MDAC's current output into a corresponding voltage. 

The operational amplifier is configured as a transimpedance amplifier, with its 

feedback resistance determining the current-to-voltage conversion factor. 

 In the specific case, additional resistors are used at the operational amplifier's 

output and feedback path to further increase the conversion factor. The resistors 

required for this are not available on the market with the specific values. 

Therefore, the combination of multiple resistors in series and parallel is used to 

achieve the desired values. It's essential to address the fact that a portion of the 

feedback resistor (5kOhm) resides within the MDAC and connects via the pins 

RFBC or RFBD respectively. Due to error propagation, achieving high accuracy 

demands the use of very precise resistors.  

 

Figure 5.17 Interconnection of the MDAC with the operational amplifier wired as a 

transimpedance amplifier [14] 

The input voltage is converted into output currents in the IC via the chain of 

switched resistors RDAC1 and RDAC2 (see figure 5.17). The controlling digital 

value determines which switches are closed or opened, resulting in a weighting 

of the input voltage. Each channel of the MDAC has an internal feedback resistor 

RFB, which is 5kOhm and can be connected externally. In principle, the 

adjustable resistors lie between the input voltage VREF from Figure 5.16 and the 

output pin IOUT. 
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This configuration involves linking two channels, such as Channel “B” and “D”. 

One channel receives the signal voltage, while the other channel receives a 

reference voltage. Channel D is connected to the output voltage OP0 of the Poldi 

sensor. By examining the digits, one can determine the specific sensor channel of 

the Poldi sensor under consideration. The OP0 output of the Poldi sensor reflects 

the sensor signal after passing through a polarization filter aligned at 0 degrees. 

The OP90 output corresponds to the Poldi sensor output after passing through a 

polarization filter aligned at 90 degrees. In Figure 5.18, Channel D is labeled as 

UOP0, and Channel B is labeled as URELNEGREF. VREFTIA represents the 

local ground, though it is shifted by 1V with respect to the global ground. Within 

the Altium schematic, a parallel connection of two 340-ohm resistors, R2 and R4, 

is paired in series with two 680-ohm resistors, R5 and R6, resulting in the 

following calculated value: 

R5  R6  680 Ohm  680 Ohm  1360 Ohm 5.2  

The parallel connection of R2 and R4 results in: 

R2R4
R2 R4

680 Ohm ∗  680 Ohm
680 Ohm 680 Ohm

340 Ohm 
5.3  

When connected in series, their combination results in a cumulative resistance of 

1700 ohms. These resistors are consolidated and labeled as R3 in Figure 5.18. 
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Figure 5.18 Diagram for calculating the current to voltage conversion factor of the POLDI 

sensor readout circuit 

The sum of currents IOUTB and IOUTD is fed into the node at the inverted input 

-IN of the AD8656 operational amplifier. This operational amplifier's output is 

connected to the internal feedback resistor RFB of the 5kOhm DAC through the 

1700Ohm resistor R3. Additionally, R3 is connected to the +INA and +INB 

inputs through an additional 680Ohm resistor, R2. Capacitor C14, with a 

capacitance of 18pF, is utilized to connect “IOUTB” and “IOUTD” to “RFBD”. 

This capacitor serves as a filter for mitigating disturbances at higher frequencies. 

When the output of an operational amplifier circuit is fed back to the negative 

input, a virtual short circuit is effectively established. This concept of a virtual 

short circuit implies that due to this feedback, the inverting input and the non-

inverting input settle at an identical potential or voltage level. 

Since the positive input +IN is linked to VREFTIA, VREFTIA is also present at 

the negative input -IN. Furthermore, UOP0 is connected to the negative input -

IN via RDAC1. To calculate the voltage across the resistor “RDAC1” employing 

the loop rule, yields the following outcome: 

U U V 0 5.4  
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U U V  5.5  

The voltage at the second resistor, where “RELNEGREF” is applied, is calculated 

using the same computational principle as follows: 

U U V 0 5.6  

U U V  5.7  

Now, to determine the currents “IRDAC1” and “IRDAC2” the respective voltage is 

divided by the corresponding resistor: 

I
U  V    

R
 

5.8  

I
U  V    

R
 

5.9  

These two currents converge at the node and thus result in a total current. 

The current then flows through the feedback resistor “RFB”. The feedback 

current “IRFB” corresponds to the sum of the two currents: 

I I I 0 5.10  

I I I  5.11  

Across “RFB” a voltage drop “URFB” occurs, which can be calculated using 

Ohm's law with the assistance of “RFB” and “IRFB”: 

U R I  5.12  

Next, one can determine “U3” by the mesh rule: 

U U VREFTIA U 0    5.13  

U U VREFTIA U  5.14  

With “U3”, the current “I3” can be calculated via Ohm's law: 

I
U
R

U VREFTIA U
R

 
5.15  
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The voltage U2 can be calculated in a similar way. VREFTIA is present at the 

non-inverting input -IN because of the virtual short circuit. The application of the 

mesh rule results in: 

V U U V 0 5.16  

U U 0 5.17  

Dissolving according to U2 results in: 

U U  5.18  

The current I2 is then given by Ohm's law as: 

I
U
R

 
5.19  

The node rule can be used to relate the currents I2, I3 and IRFB. The node rule states 

that the sum of all currents is zero. Therefore, the result is: 

I I I 0 5.20  

Now the formulas are used for each current: 

U V U
R

I
U

R
0 

5.21  

URFB=RFB*IRFB is inserted into the equation and IRFB is excluded. Then the result 

is: 

U V R I
R

I
R I

R
0    

5.22  

R
R

1
R
R

I
U V

R
0     

5.23  

Since the purpose of this calculation is to calculate the output voltage of the circuit 

UOUT, this formula is resolved to “UOUT”: 

U V
R

 
R
R

1
R
R

I  
5.24  

Multiplying both sides of the equation by R3 gives: 
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U V R R
R R

R
I       

5.25  

Factoring out -RFB on the right-hand side of the equation gives: 

U V R 1
R

R
R
R

I     
5.26  

Term 1 in equation (5.25) is expanded to the fraction R2/R2. This fraction is 

combined with R3/R2 to give: 

U V R
R R

R
R

R
I     

5.27  

IRFB from equation (5.11) is substituted into equation (5.27) together with 

equations (5.8) and (5.9) to give: 

U V  

= R  

5.28  

Factoring out RDAC1 and RDAC2 gives: 

U V

R
R

R R
R

R
R

U V

R
R

R R
R

R
R

∗ U V  

5.29  

For RDAC1 applies: 

 R
R ∗ 65536

N
 

5.30  

For RDAC2 applies: 

R
R ∗ 65536

N
  

5.31  

𝑁 ,  are the selected DAC settings between 1 and 65536. Now the equations 

for RDAC1 and RDAC2 are inserted in formula (4.28). 
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U V U V ) 

 U V  

5.32  

By inserting the resistor values used and the values for the voltages VREFTIA and 

URELNEGREF, the output voltage can be calculated. Inserting the following values 

R2=680Ohm; R3=1700Ohm; RFB=5kOhm; URELNEGREF=0.375V and 

VREFTIA=1V into equation (5.32) gives equation (5.33): 

U 1V ∗ 3.84 ∗ U 1V)  ∗ 2.4V 5.33  

Formula (5.33) is converted to UOUT, and this results in two separate terms. One 

term is multiplied by UOP0 and URELNEGREF and once by VREFTIA. At the end, +1 is 

added for VREFTIA. 

𝑈
𝑁
65536

∗ 3.84 ∗ 𝑈  
𝑁
65536

∗ 1.44𝑉 

1𝑉 3.84 ∗  
𝑁
65536

𝑁
65536

1  

5.34  

5.3.1.3.1 DAC settings 

Figure 5.19 illustrates the relationship between output voltage measurements with 

respect to VREFTIA, with NDAC2 configured as a function of NDAC1. The red 

curve represents NDAC2/65536=0.8, while the blue curve corresponds to 

NDAC2/65536=0.3. 
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Figure 5.19 Output voltage of the POLDI readout chain related to VREFTIA as a function of 

the DAC setting of channels 

The variation of NDAC1 is depicted along the x-axis in this graph, revealing a 

noteworthy pattern: as NDAC1 is raised, the corresponding output voltage 

progressively diminishes. The parameters UOP0=1.625V, 

URELNEGREF=0.375V, and VREFTIA=1V are selected constant. The Y-axis 

displays the output voltage with respect to VREFTIA, while the X-axis represents 

the percentage value of NDAC1 relative to the value 65536. In other words, a 

value of 10 signifies 10% of 65536. Employing a program to manage the MDAC 

facilitates the configuration of NDAC values spanning from 1 to 65536. The 

disparity between DAC1 and DAC2 values bears direct influence on the output 

voltage relative to VREFTIA; a greater difference between these values 

corresponds to a higher output voltage against VREFTIA. Notably, Figure 4.19 

illustrates a linear reduction in output voltage as NDAC1 approaches the value of 

NDAC2. Once NDAC1 equals NDAC2 or surpasses it, the outcome is an output 

voltage of 0V. 

U V U V )  

 
N
65536

R R
R

R
R

U V  

5.35  
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U V
N
65536

∗ 2.4V
N
65536

∗ 2.4V 
5.36  

In equation (5.35), the value within the blue highlight is negative, while the one 

within the red highlight is positive. UOP0 – VREFTIA yields a positive number, 

and when multiplied by -NDAC1, it results in a negative value within the blue-

marked range. Conversely, in the red region, (URELNEGREF - VREFTIA) 

equates to a negative value, given that RELNEGREF has a value of -0.625V. 

When multiplied by -NDAC2, it becomes a positive number. The negative value 

reduces the output voltage. As the percentage increases, the negative value gains 

more prominence, thereby offsetting a larger portion of the positive term. 

Consequently, a voltage drop occurs, as depicted in Figure 5.19. 

When the NDAC1 setting is increased, the RDAC1 resistance becomes smaller, 

this can be seen in formulas (5.35) and (5.36). As NDAC1 value is increased, the 

output voltage decreases (see Figure 5.19). 

Formula (5.36) is used to compare whether the measured values correspond to 

the expected values. (Rounded to two decimal places). 

Table 5.1 Measured values compared with the results of the formula. 

NDAC1 

setting 

NDAC2 

setting 

Measured 

value 

Result of the formula 

Uout-VREFTIA 

Deviation 

10% 30% 0.49V 0.48V 0.01V 

20% 30% 0.24V 0.24V 0v 

50% 30% 0V (-0.48V) (-0.48V) 

10% 80% 1.66V 1.66V 0V 

20% 80% 1.42V 1.44 V 0.02V 

50% 80% 0.73V 0.72V 0.01V 

80% 80% 0.03V 0V 0.03V 
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The red curve was taken to illustrate the calculation. NDAC2 is set to 80%. 

NDAC1 is set at 50% for example. This results in this formula: 

U 1V 0.5 ∗ 3.84 ∗ 1.625V 1V 0.8 ∗ 3.84

∗ 0.375V 1V 0.72 

5.37  

The comparison of the measured values with the values from formula (5.37) 

results in small deviations in the two-digit Millivolt range. 

If NDAC1 is greater than NDAC2, the result of the formula is a negative number. 

However, in the measurements, the lowest number is zero because the ADC's 

input voltage range is limited to zero volts. 

5.4 Poldi sensor board 

POLDI is an optical sensor manufactured by AdvICo Microelectronics. This 

optical sensor measures the polarization angle of linear polarized light. The 

incident light is measured by four photodiodes. These photodiodes are integrated 

on a CMOS chip, each covered by a linear polarization filter. The polarization 

filters are realized in one of the metallization planes of the CMOS process by 

parallel conductive tracks, which lie at four different angles (0°, 45°, 90°, and 

135°).  When the POLDI sensor is irradiated with linearly polarized light, each 

diode delivers a photocurrent whose current intensity depends on the angle 

between the polarization plane of the incident light and the orientation of the 

polarization filter. [3] 

The Poldi sensor features 40 pins for integration with other boards.  

to facilitate seamless and efficient pin connections with other boards. The design 

of the POLDI sensor circuit board involves connecting the POLDI sensor to the 

board, a header pin and a terminal block with 12 pins terminal block connects a 

total of eight readout channels. Four channels are provided for the readout of the 

diodes, which are covered with polarization filters with different orientations (0°, 

45°, 90°, 135°). The remaining four channels are available for the readout of the 
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diodes without polarization filters, which can be used to determine the intensity 

of the incident light. Furthermore, the necessary power supply is supplied via its 

dedicated pin. Figure 5.20 shows the POLDI sensor circuit board. 

 

Figure 5.20 The POLDI sensor circuit board 

In this work, only the four channels which are covered with polarization filters 

are used (OP0, OP45, OP90, OP135).  

5.5 Cmod A7-35T 

The Cmod A7 is a compact, 48-pin DIP form factor board centered around a 

Xilinx Artix-7 FPGA. This board boasts essential components, including a USB-

JTAG programming circuit, USB-UART bridge, clock source, and basic I/O 

devices. It presents 44 Digital FPGA I/O signals and two FPGA analog inputs, 

making it seamless for users to incorporate programmable logic designs into a 

solderless breadboard setup. 

FPGA configuration data is stored as bitstreams with a .bit file extension. These 

files are transferred from a PC to the FPGA using the onboard USB-JTAG system 

via a micro-USB port. Using Xilinx's Vivado software, bitstreams can be 

generated from VHDL or Verilog source files. Bitstreams reside in the FPGA's 

volatile memory cells, defining its logical functions and circuit connections. This 

configuration persists until overwritten by a new bitstream or upon removal of 

board power. 
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The Cmod A7 features an FTDI FT2232HQ USB-UART bridge connected to a 

Micro-USB port. This bridge enables communication between the board and PC 

applications using standard Windows COM port commands. Additionally, the 

FT2232HQ manages the Digilent USB-JTAG setup. By integrating USB-UART 

and USB-JTAG functionalities into a single device, the Cmod A7 is 

programmable, communicative via UART, and powered through a single Micro-

USB cable, streamlining its usage [22].  

In this project the Cmod A7-35T board acts as an interface between the POLDI 

sensor and FPGA that extracts the angle information by digitally processing the 

sensor signals. The four channel signals which are covered with polarization 

filters and digitalized with the hardware described before are connected to the 

digital I/O pins.  

 

 

 

 

 

 

 

 

 



81 
 

6 Design of CORDIC blocks in Verilog 

In this chapter, the two Verilog designs for the calculation of quotients and the 

arcsine function are explained. Starting from the Verilog source code the two 

calculation modules are explained in detail. In addition, simulations in each case 

verify the functional correctness of the design. 

6.1 Requirements 

The following requirements were considered in the design of the two 

processing blocks. 

 No use of multipliers: 

Compared to additions or subtractions, multiplications require a high 

computational effort. Here the CORDIC algorithm is used among other things 

because this effort is avoided. 

 No use of floating-point arithmetic 

The use of floating-point signals requires complex floating-point arithmetic 

leading to increased hardware effort. To avoid this, a fixed-point number format 

is used instead. For this purpose, the numbers are multiplied by a power of 2 

before processing which corresponds to a simple digit shift on the binary level to 

the left to reserve bit positions for the coding of values less than one. This can be 

realized in a simple way by a shift register. The factor to be used results from the 

number of iteration steps in the CORDIC algorithm. In the last, n-th step, 2-n is 

added or subtracted. 

 Program flexibility: 

The source code should allow the flexible modification of design parameters e.g. 

the number of iterations. The computational accuracy of the algorithm and the 

time required for its execution is scaled over the number of iterations. Moreover, 
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since accuracy also depends on the nature of the computational task, it should be 

possible to adapt the number of iterations and the bid width of crucial signals to 

the respective requirements. 

 Pipelining: 

The calculation is to be implemented as a pipeline process. This is a concept that 

is used in processors (see Figure 6.1). Instead of calculating different values one 

after the other, the individual steps of the operation are executed in parallel. This 

means that as soon as the first step of the first value has been executed, the first 

iteration for the calculation of the next value is started.  

 

Figure 6.1 Pipelining example 

In this case, a total operation is the calculation of a function value. Its individual 

step is a single iteration according to the CORDIC algorithm. The latency, i.e. the 

time required for the calculation of the function value, does not change in this 

case because it is specified by the cycle time and the number of iteration steps. 

However, the number of function evaluations per time unit can be increased by 

parallel execution. Since as many function evaluations are executed in parallel as 

iteration steps, only the clock frequency of the FPGA limits the maximum rate of 

input and output values. 
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6.2 Verilog design of the division calculation 

The block diagram for the realization of the division operation is shown in Figure 

6.2. The basis for the calculation is the vectoring mode of the CORDIC algorithm 

in linear mode, which was presented in chapter 3.1.3.3  

 

Figure 6.2 The concept for the realization of the division 

The calculation of the individual iteration steps is performed in each case by a 

separate module. Each of these modules receive the calculation results (xi-1, yi-1, 

zi-1) of the previous step or module as input and provides the results (xi, yi, zi) of 

the respective iteration step as an output of the corresponding iteration step. 

In Verilog, this module concept is represented by a hierarchical structure. The top 

level is the “Divv_top” module, which controls the overall iteration process. It 

consists of the modules for the individual iteration steps. Due to their similarity, 

only one module (named “divv”) needs to be designed, which is instantiated 

repeatedly. This reduces the implementation effort and also guarantees the simple 

adjustment of the number of iterations. In the present case, the calculation of the 

quotient is performed with up to 15 iterations. The modules for this calculation 

are explained in the following two sections. 

6.2.1 “divv” submodule 
The implementation of the module starts with its declaration and the definition of 

the inputs and outputs (see source code 6.1). The module receives the generic 
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integer parameter k1  from the main module, which is needed to perform the 

calculations. 

 

Source code 6.1 Declaration of ports of the “divv” module 

The inputs and outputs of the module are defined in lines 16 to 24. declaring the 

port name, the port type (in or out) and the type of the port's signal. The first three 

inputs, (lines 16 to 18 in source code 6.1) are signals, which are used to control 

the module and have the following function: 

 “clk”: The system clock is provided at this input. 

 “reset”: Via this input the module receives an asynchronous active-low 

reset. This signal originates from the “divv_top” module and is passed on 

to all instances of the module “divv”, so that all modules are reset at the 

same time.  

 “enable”: This input is used to activate the module. This also originates 

from the module “divv_top”, i.e. all modules of the type “divv” are 

simultaneously enabled (enable = 1) or disabled (enable = 0). 

The other three inputs and the three outputs (lines 19 to 24 in source code 5.1) are 

used to transmit numeric values. For this purpose, signals with the bit length of 

the respective numeric value are assigned. The length is identical for the input 

and respective output. The declared lengths of 18 or 32 bits are explained in the 

following sections. 
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 “x_in”, “x_out”: The input and output signal of the ports x_in and x_out 

size are identical because the algorithm does not change this signal. 

Therefore, the signal length corresponds to the length of the initial value, 

which is set to 16 bits. Although the signal and its size does not change, it 

is used in every iteration step, which is why all “divv” modules get this 

signal as an input port. 

 “y_in”, “y_out”: The value of y is reduced to zero by the process 

iterations. Since no floating-point numbers are to be used, the required 

accuracy is achieved by multiplying the 18-bit starting value by a factor of 

214 in the module “divv_top”. Thus, y is a fixed-point number with 14 

places after the decimal point. 

 “z_in”, “z_out”: In the division algorithm z represents the sum of the 

displacements (see equation (4.48)). The individual displacements have a 

size of 2-i and have a length of up to 14 bits in the selected fixed-point 

format. Considering that the maximum value which can be processed is 

two which can be coded by two bits and an additional bit for the sign, the 

length of this signal is 18 bits.  

 

Source code 6.2 Conversion to internal signals 

The signal is defined by type and length when the module is created (see source 

code 6.2). The input signal “x_in” is multiplied by 214 to convert it into the same 

fixed-point number format as the other two signals y_in and z_in. Additionally, 
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the corresponding input signal is assigned into an internal signal (see line 35 in 

source code 6.2).  

In addition to the input signals, the module-internal signals “y1” and “z1” are 

defined, which record the calculation results from which the output signals are 

generated. 

For the processing of the signals, i.e. the execution of the individual iteration steps 

of the CORDIC algorithm, a process is implemented. The design for this is shown 

in source code 6.3. A process is executed only when it is active. The activity of 

the process is determined, as already mentioned, by the two signals “clk” and 

“reset”. These are passed to the process in the so-called sensitivity list (see line 

39). If one of these inputs changes, the process is triggered and the values of the 

signals are processed accordingly. 

First, it is checked whether the calculation is to be reseted, the signal “reset” has 

the logical value 0, and the corresponding assignments are made (lines 43 to 45). 

In this case, the internal signals y1 and z1 are set to zero. The output signal for x 

should never assume the value 0 since it serves as divisor for a quotient 

calculation in the further course. Therefore, value 1 is assigned here. 

The actual calculation is activated via the clock signal “clk”, which periodically 

changes between the values 0 and 1. The calculation is triggered on a rising edge 

of the clock signal. This is evaluated in line 47 by the condition “else”. The 

execution of the calculation is also linked to the condition that the module should 

be active, i.e. the signal “enable” has the logical value 1 (line 49). Otherwise, the 

following calculations are skipped, i.e. the module effectively makes no changes 

to the signals.  
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Source code 6.3 Process for performing an iteration step in the “divv” module 

Lines 50 to 82 correspond to the actual calculation. According to the iteration rule 

in equation (3.51), the sign of “y_in1” determines the decision factor and thus the 

calculation of “y1” and “z1”, which results in a distinction in three cases. In 

deviation from the iteration rule, arbitrary signs are allowed for the x-value 

“x_in1”. For negative x-values the sign of the changes of the y and z values must 

be changed, otherwise, the desired shift of y in direction 0 will not be realized. 
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This results in two subcases each and a total of four cases for performing the 

calculation. According to the iteration rule, the the y-value is changed xi.2-i and 

the z-value is changed by 2-i in the i-th step. Taking into account the shift by 214, 

the following value results for x_in1. 214- i in the i-th module. Since the i-th 

module number is not available as a variable, a parameter k1 with the value 2i is 

passed to the module instance by the main module. With the help of the parameter 

k1 the new values of y1 and z1 can be calculated by “x_in1/k1” or “2**14/k1” 

resepectively.  

After completion of the calculation, the output signals are generated. The x-value 

is not changed during the process so that the input variable can be passed on (see 

line 79). Since the input signal “x_in” already has the correct format, it is 

immediately assigned to the output “x_out”. The assignment is made within the 

process because otherwise the signal is fed through without any storage element. 

This means that this assignment is not clocked with the edge of the clock. As a 

result, the clock-controlled pipeline would have inconsistent data in the pipeline 

stages. Further assignments can be done outside the process because the used 

internal signals “y1” and “z1” are already clocked (see lines 84 and 85).  

6.2.2 Main module “divv_top” 

The implementation of the main “divv_top” module starts, with the declaration 

of the signals and the inputs and outputs of the module (see source code 6.4). 

With the parameter “Drehung” in line 13 the total number of iteration steps is 

defined. Since the iteration counting starts with 0, a number of 15 iterations is 

defined by specifying a value of 14. This quantity is used in the following to 

create a corresponding number of modules of the type “divv”. By changing the 

assigned value, the number of iterations can be easily adjusted, where 15 is the 

maximum number of iterations that can be performed.  A larger number of 

iterations could be specified, but effectively only 15 iteration steps are executed. 

As already described for the “divv” module, regardless of the number of iterations 
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the signals are implemented as integers representing a fixed-point number with 

14 decimal places. Iterations beyond the number 15 would result in values that 

are less than 1 in the defined format and are therefore considered to be 0. As a 

result, the associated modules “divv” would not introduce any modification to the 

input signals. Thus, a value of more than 14 for parameter “Drehung” does not 

lead to an error, but also not to a more accurate result. In case a higher precision 

is required also the fixedpoint number scheme has to be modified by choosing a 

higher bit-width and adding additional decimal places. 

 

Source code 6.4 Declaration of variables and ports for the “divv_top” module 

The signals in the module definition from line 16 to 23 in source code 6.4 

correspond in their format and meaning to the port signals of the “divv” module 

and have already been described in detail in chapter 5.2.1. The main difference is 

that these are the external ports of the top level design via which the input signals 

for the overall calculation and its results are transmitted. The signal “result” 

contains the result for z after the given number of iterations and thus the desired 

approximate value for the quotient “y_in” by “x_in”. The outputs “x_out” and 

“y_out” are not required. They are implemented during Verilog design so that the 

correctness of the calculation can be checked and the causes of any errors can be 

better located. 

Furthermore, the internal signals that connect the individual modules of the type 

“divv” are to be defined. Since the number of iterations should be easily adaptable 

and a generic signal designation is costly, these signals are summarized in arrays, 
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whose size can be varied. When generating the modules, the required signal can 

be assigned by specifying the index from the array. 

The implemented arrays are lists with signals of the same bit length of 18 bit and 

32 bits respectively (see source code 6.5). 

 

Source code 6.5 Defining the types for the internal and output signals for the division 

calculation 

Furthermore, the input signal “y_in” has to be transformed to the already 

described format of a fixed-point number with 14 decimal places. This is achieved 

by appending 14 bits 0. For this the auxiliary signal “y_in_hilf” is introduced. Its 

first 16 bits (from 31 to 14) are the same as “y_in”. The other 14 elements (from 

13 to 0) are set to zero (see source code 6.6). 

 

Source code 6.6 Transformation of the input signal for y to 32-bit length 

The “y_in_hilf” signal generated in this way serves as input signal for the first 

“divv” module. For the input signal “x_in” such a transformation is not necessary, 

because the shift of 14 digits necessary for the calculation is done within the 

module.  

The main task of the “divv_top” module is to generate the sub-modules of type 

“divv” and to establish the connections between the modules using the 

corresponding port assignments. The implementation is shown in source code 6.7. 
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Source code 6.7 Generation and connection of the individual modules for the division 

calculation 

The modules are generated and the individual entries for variables and ports are 

assigned according to the declaration in source code 6.1. Here a distinction must 

be made between the first and all further modules since the input signals from 

“divv_top” are to be transferred to the first module. During the initialization of 

the module, parameters and ports are assigned according to the sequence in source 

code 6.4 (lines 16 to 24). The inputs “clk”, “reset”, “enable” and “x_in” of 

“divv_top” are taken directly from the main module. Instead of “y_in” the signal 

“y_in_hilf” is used, as already explained. The iteration starts with z_in =0, so the 

“divv_top” module has no input signal. Therefore, this input sets to 0 in the first 

module. The outputs of the first module form the first element (i=0) of each result 

array. 

The modules following the first module are similarly defined for arbitrary 

positive values of i. As with the first module, the control signals “clk”, “reset” 

and “enable” are taken from the main module. The only difference is the 

connection of the inputs for the signals x, y and z. They are the output signals 

from the previous module, which can be read chosen from the array with the 
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output signals. Finally in line 54 to 56 the output signals of the last “divv” module 

are passed to the outputs of “divv_top” module. 

6.2.3 Simulation 

In this section, the individual signals are simulated for the design using Vivado 

to verify the correctness of the implementation. The first step is to check the 

design of the circuit by generating a schematic depending on the given number 

of iterations. Figure 6.3 shows an exemplary schematic of a design with four 

iterations (i = 3). 

 

Figure 6.3 Schematic of the division calculation for i=3 

It can be seen that the correct number of modules is created, with the assignments 

of the instances “begin” on the left and “berechnung” for all the further instances 

(source code 6.7) made correctly. The first module receives the external signals 

“x_in” and “y_in” as input.  The initial value for z is always zero. The 

corresponding assignment for the input “z_in” of the first module is implemented 

correctly by connecting the input to the ground. The outputs of the previous 

module for x, y, and z are connected to the corresponding inputs. The output 

signals of the last module, which the final results of the calculation are connected 

to the outputs “x_out”, “y_out” and “Result” respectively. In the upper part of 

Figure 6.3 the three control signals “clk”, “enable” and “reset” are passed as 
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planned directly from the input of the top level design to the corresponding inputs 

of the “divv” modules. 

After the correctness of the circuit has been checked, the individual signals are 

simulated. As an example, consider the calculation with 15 iterations (i = 14) in 

Figure 6.4. The right part of the figure shows the time history of the individual 

signals. The numeric values are represented in the format of a fixed-point number 

with 14 digits. 

The top three signals are the control signals. While “reset” and “enable” assume 

the constant values 0 and 1 respectively, the clock signal “clk” changes 

periodically between 0 and 1. As can be seen from the time scale above, a total 

period of 20 ns is defined. However, the simulation primarily serves to check the 

signals and does not reflect the actual time sequences for the individual 

calculations. An additional post-synthesis timing simulation is used to quantify 

the actual time sequences and, if necessary, to adjust the period duration of the 

clocking signal.  

The test signals “x_in” and “y_in” are generated on the basis of numerical series 

with arbitrary numbers. With user-defined numbers, whereby the signal changes 

are carried out at the time of a falling edge (change from 1 to 0) of the clocking 

signal. By comparing the clocking signal with the underlying signals, it can be 

seen that the calculations in the submodules and the changes at their output 

signals are performed at the rising edge of the clock signal respectively. 

Furthermore, the pipeline mode of operation can be seen, 14 calculations are 

executed in parallel at a time, which are started with a time delay. 
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Figure 6.4 Behavior simulation of the division calculation for i=14 

The results of the calculation for the quotient 1/14 which is obtained by choosing 

the input signals “x_in” = 14 and “y_in” = 1 are listed in Table 6.1. The relative 

deviation to the exact result 1/14 ≈ 0.071429 is listed. 

Table 6.1 Calculation results for “x_in” = 14 and “y_in” = 1 

Module Nr.i Z_out(i)=z i.214
 zi ERROR 

0 16384 1,000000 1300,00% 

1 8192 0,500000 600,00% 

2 4096 0,250000 250,00% 

3 2048 0,125000 75,00% 

4 1024 0,062500 12,50% 

5 1536 0,093750 31,30% 

6 1280 0,078125 9,40% 

7 1152 0,070312 1,50% 

8 1216 0,074219 4,00% 

9 1184 0,072265 1,20% 

10 1168 0,071289 0,17% 

11 1176 0,071777 0,50% 

12 1172 0,071533 0,50% 

13 1170 0,071411 0,01% 

14 1171 0,071472 0,08% 
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After 15 iterations, a relative deviation of 0.08% is achieved. The results in Table 

6.1 prove that the individual iteration steps are basically execution of the 

individual iteration steps. Numerically, these values are the same as theoretical 

calculations with 16-bit fixed-point numbers and shown in table 6.2. Apart from 

the sign bit and the pre-decimal place, this format has 14 binary decimal places. 

Therefore, all fractions smaller than 1.2-14 are deleted without replacement and 

they are rounded down.  

Table 6.2 Theoretical calculations of 1/14 

i xi yi zi di 2-i Zi.214 

0 14 1 0.000000 ‐1 1 0 

1 14 -13 1.000000 1 0.5 16384 

2 14 -6 0.500000 1 0.25 8192 

3 14 -2.5 0.250000 1 0.125 4096 

4 14 -0.75 0.125000 1 0.0625 2048 

5 14 0.125 0.062500 ‐1 0.03125 1024 

6 14 -0.3125 0.093750 1 0.015625 1536 

7 14 -0.09375 0.078125 1 0.0078125 1280 

8 14 0.015625 0.070312 ‐1 0.00390625 1152 

9 14 -0.03906 0.074219 1 0.001953125 1216 

10 14 -0.01172 0.072265 1 0.0009765625 1184 

11 14 0.001953 0.071289 ‐1 0.00048828125 1168 

12 14 -0.00488 0.071777 1 0.000244140625 1176 

13 14 -0.00146 0.071533 1 0.0001220703125 1172 

14 14 0.000244 0.071411 ‐1 6.103515625E-05 1170 

 

The last line contains the result for a calculation with 15 iterations. As the 

variables have only 14 binary decimal places, calculations with a number of 

iterations i ≥ 15 lead to the same result as with a number of iterations of i =14, in 

this case: 1170.2-14. 
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In the following, the calculation for different values and signs of the input signals 

is investigated. The results of these simulations are summarized in Table 6.3. 

Table 6.3 Decimal calculation results after 15 iterations for different quotients 

Nr. x_in y_in zexact z_out(i)= Z14.214 Z14 Error 

1 14 1 0,071428 1171 0,071472 0,08% 

2 -14 -1 0,071428 1171 0,071472 0,08% 

3 14 -1 -0,071428 -1171 -0,071472 -0,08% 

4 -14 1 -0,071428 -1171 -0,071472 -0,08% 

5 2 3 1,5 22575 1,4999389 -0,0041% 

6 10 19 1,9 31129 1,8999633 -0.0019% 

7 1000 1 0,001 17 0,0010375 3,7597% 

8 9000 1 0,0001111 1 0,0000610 -45,0684% 

9 10000 -1 0,0001 -1 -0,0000610 -38,4844% 

10 4 7 1,75 28672 1,75 0,0000% 

11 1 2 2 32767 1,9999389 - 

12 -1 9 -9 -32767 -1,9999389 - 

 

The first four lines contain the simulated results for the possible inputs for the 

calculation of 1/14 or -1/14. It can be seen that regardless of the sign of the 

quotient, the same result is achieved in terms of amount. This proves that input 

signals are independent of the sign for the computation and the algorithm has 

been implemented correctly. 

The two following lines 5 and 6 show that the calculations also work for the case 

of “y_in” greater than “x_in” i.e. for quotients greater than 1. Furthermore, it can 

be seen that the relative error tends to decrease with increasing magnitude of the 

quotient. This is because the algorithm works with a limited accuracy of 14 binary 

decimal places with 15 iteration steps. Thus, the amount of the absolute error can 

be estimated upwards with emax = 2-14 ≈ 6.1035.10-5. Consequently, the relative 

error related to the value of the quotient decreases with the size of the quotient. 
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Accordingly, the calculation of very small quotients leads to large errors. Line 7 

shows the example of the calculation of 1/1000. If quotients are calculated that 

are smaller than 2-13, as in lines 8 and 9, the calculation reaches the limit of its 

resolving power and the result is always 2-14, which means a very large error. 

Quotients smaller than 2-14 cannot be calculated due to the restriction of the bit 

length for the input variables. 

A special case is the calculation of quotients that correspond to an integer power 

of 1/2. If this power is less than or equal to 14, the iteration leads to the exact 

result.  Line 10 shows this with the example of the calculation of 4/7. 

Furthermore, as already explained in chapter 3.1.3.3, the application of the 

CORDIC algorithm is limited to quotients with magnitudes of less than 2. Lines 

11 and 12 show the calculation results for invalid entries. Depending on the sign, 

the calculation increases or decreases continuously until the maximum amount of 

|z | 2 2
1 2
1 2

2 1
2

32767
16384

1,9999389       6.1  

is reached. This value corresponds to the largest quotient that can be calculated 

with 15 iteration steps. For any input whose magnitude is larger than this limit, 

this result is always calculated. 

The simulations prove that the design represents the CORDIC algorithm correctly 

and with no errors. The problems of the low accuracy for small quotients and the 

upper limits quotients can be solved by proper preprocessing of the input signals. 

By a simple digit shift in the binary range, more favorable or permissible values 

can be achieved for the input signals. One possible approach to this is to equalize 

the number of binary digits of the two input values by multiplying the smaller 

value by 2k. The result can be shifted back to the actual value by multiplication 

with or division with 2k. For example, instead of 9/1 the calculation for 9/8 would 

be carried out and the result would be multiplied by 8, which can be achieved by 
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shifting three binary digits to the left. Instead of the quotient 1/1000, 512/1000 

would be calculated in this approach and the result would be shifted to the right 

by nine digits. However, these operations cannot be implemented for output 

signal with 16 bits length. Because this limits the binary format of the calculation 

result to one place before the decimal point and 14 places after the decimal point. 

Therefore, non-zero numbers can only represent the value range 2-14 ≤ z ≤ 2 - 2-

14. 

In addition, a further simulation is performed to check the correct function of the 

design at the timing level. A section of the simulation result is shown in Figure 

6.5. 

 

Figure 6.5 Results of the time simulation of the division with i = 14 for a clock of 50 MHz 

The calculation starts at a positive edge with the time coordinate 100 ns (blue 

line). The result of the calculation can be seen by the lowest signal, which is 

shown in Figure 6.5, when the signals changes from 0 to 1171 at a time coordinate 

of 400ns (yellow line).  With the ideal operation without time delay, the 

calculation would require 14 clock cycles of 20 ns, i.e. 280 ns. Taking into 

account the initial time, the ideal termination time of the simulation is 380 ns. 

With the FPGA used, clock frequencies of up to 100 MHz are possible; The 

simulation shows that for frequencies of more than 50 MHz or clock times of less 

than 20 ns, the calculation works correctly. 

The simulations show that the design works as desired. Considering the explained 

limitations resulting from the CORDIC algorithm and the maximum signal 
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length, the calculation results are correct. Furthermore, the correct function can 

be guaranted up to a clock frequency of 100 MHz. 

6.3 Verilog design of the Arcsine function 

The concept for implementing the calculation of the arcsine using the CORDIC 

algorithm is similar to the approach for the division calculation (see Figure 6.6). 

Two module types are created for the calculation. The main module “arcsin_top” 

controls the calculation and creates the submodules of the type “arcsin”, which 

implement a single iteration of the algorithm. 

 

Figure 6.6 Concept for the realization of the CORDIC algorithm for the computation of the 

arcsine with FPGA 

The essential difference to the division block is located at the input signals. For 

the arcsine calculation, the signal “arg” is used additionally. This represents the 

argument for which the calculation must be executed.  In all iterations the 

argument is only required for the determination of the decision factors and is 

therefore forwarded unchanged from submodule to submodule. In contrast, in the 

division block, the quotient to be calculated is determined by the input values for 

x (denominator) and y (denominator). Here, input signals for x, y and z are not 

required, because the initial values for these variables are given by the iteration 

rule (see chapter 3.1.3.2.1). 
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6.3.1 “Arcsin” Submodule 

The module starts with the declaration of the inputs and outputs signals (see 

source code 6.8). The module uses three parameters (line 13) which are chosen 

according to the iteration number i by the main module. Parameter “k1” is the 

divisor of value 2i, which is needed for the calculation of the output signal 

“y_out”. This parameter is similar to the parameter “k1”, which was introduced 

in the division calculation. The second parameter “kp2” is the divisor of value 22i. 

The third parameter takes the value arctan(2-i) and represents the step size for the 

change of z in the i-th iteration step. 

 

Source code 6.8 Declaration of variables and ports for the "arcsin" module 

The input and output signals on lines 15 to 25, except for the additional signals 

“ARG” and “Arg_out”, are similar in format and meaning to those of the module 

“divv” (see source code 6.1) and have already been explained there. 

The special feature of this module is that signals with the same bit width of 18 

bits are used for all numerical variables. This format corresponds in each case a 

signed fixed-point number with 14 decimal places. The actual limits that occur 

are the following:  

 Since the sine function maps to the value range [-1, 1], permissible inputs 

can only be in this range, i.e. |ARG|≤ 1. 
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 When calculating z, an amount of arctan(2-i) is added or subtracted in each 

step. Thus, the maximum value that can be calculated is limited to 

|z| arctan 2 1,78                                                       6.2  

 The values for x and y, starting from the initial values 1
𝑘 1 and 0 

respectively strive to the following limits: 

lim
→

x 1 arg   and    lim
→

y arg                                   6.3  

Therefore, the values in the iteration are always smaller than the maximum value 

of the argument, which is the value 1. 

The module calculation is done with internal signals which represent the initial 

values (“x0”, “y0”, “z0”, “t0”) and the calculation results (“x1”, “y1”, “z1”, “t1”). 

Here the same number format is used for all external signals which are signed 

fixed point numbers with 18-bit length (see source code 6.9). 

 

Source code 6.9 Definition of the internal signals “arcsin” module 

In source code 6.9, first the internal signals are declared with signed format and 

a length of 18 bits. Since the external signals use the same number format, the 

external input signals can be directly assigned to the corresponding internal 

signals (see source code 6.9).  
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The design which implements the iteration steps of the CORDIC algorithm in the 

submodule is shown in source code 6.10. The “always” block has a sensitivity 

containing of the control signals “clk” and “rst”. The operations that are 

performed event as a result of the change of one of these signals can be seen in 

the source code 6.10: If the signal “rst” has the logical value 0, the calculation is 

reset by setting all output signals to 0 (see lines 43 to 46). Otherwise, under the 

condition that “enable”  is high, on a rising edge of the clock signal “clk” the 

calculation is triggered (see line 51).  

 

Source code 6.10 The process of performing an iteration step in the “arcsin” module 
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The actual calculation, which is described in lines 52 to 75, corresponds to the 

iteration rule in equation 3.45. The three calculation variants, which result from 

the three possible expressions of the decision factor, are chosen by the evaluation 

of if-conditions. For the calculation of “x1”, “y1”, “z1” and “t1” the step sizes 2-

i, 2-2i and arctan(2-i) are required. The iteration number “i” is introduced by means 

of parameters. The parameters k1, kp2 and arct which are generated by the 

“arcsin_top” module and passed to the submodule during instantiation. In the last 

part of the process, after completion of the calculations, the calculation results are 

assigned to the corresponding output variables (see lines 76 to 79). 

6.3.2 Main module “arcsin_top” 

The definition of the variables as well as the inputs and outputs of the main 

module for the calculation of the arcsine is done with the help of the shown design 

in source code 6.11. 

 

Source code 6.11 Declaration of variables and ports for the module “arcsin_top” 

The parameter “N” defines the number of iteration steps. The assignment of the 

value 14 corresponds to the execution of 15 iterations of the CORDIC algorithm. 

As already explained in the context of the division calculation and proven by 

simulation, any number of iterations can be specified, but values of N > 14 do not 

lead to a more exact result because of the limitation of the number format to 14 

binary decimal places, but only extend the calculation time. The ports “clk”, “rst” 

and “enable” are control signals. The signal “Arg” corresponds to the value for 

which the arcsine is to be calculated. “Arcsin_result” is the calculation result after 

N+1 iterations. No external signals are required for the signals x, y, z and t. 

Because they are only auxiliary use and are passed on as internal signals from 
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submodule to submodule. For this purpose, as already explained for the main 

module of the division, several arrays are generated, which contain all calculation 

results of the respective size (see source code 6.10, lines 76 to 79). As seen in line 

79 of the source code 6.10, the internal signal “Arg_out” is defined to scale the 

input argument. Thus, it is required to pass the scaled argument from submodule 

to submodule. The component i∈{0,1,...,N} of “x_out”, “y_out”, “z_out” and 

“Arg_out” contains the corresponding value of the output of submodule i. 

The key task of the main module is the generation and connection of the 

submodules, which perform the individual calculation steps. The corresponding 

code is shown in source code 6.12. As submodules require 18bits to calculate the 

arcsine and the input argument has a bit width of 16 bits, the number of bits have 

to be extended with respect to the most significant bit (line 30). 2*arctan(2-i) are 

calculated converted into the fixed-point binary format which is used for the 

calculations and introduces as constants with the parameter initial_values in line 

31. The “generate” statement generates the individual submodules. A distinction 

must be made between the first module with i = 0 (lines 37 to 44) and the other 

modules (lines 45 to 52). In both cases, the parameters “k1”, “kp2” and “arct” are 

defined first, which contain the displacements for the quantities x, y, z and t 

during the execution of the CORDIC algorithm. By using them as parameters, 

with constant values no additional hardware for their calculation is created. 
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Source code 6.12 Generation and connection of the individual modules for the arcsine 

calculation 

The main difference between the two submodule types consists in the assignment 

of inputs and outputs, which is done according to the sequence in the module 

definition (see source code 6.8).  (lines 40 - 43), the input “x_in” of the first 

module receives the value of the 1 as a decimal number, i.e.16384, while the 

inputs “y_in” and “z_in” are set to zero. Furthermore, the input “Arg” is assigned 

the input signal “Arg_hilf” of the main module. For the following modules, these 

inputs are connected to the outputs of the previous module (lines 48 - 51). Finally, 

the calculation result of the last module is assigned to the corresponding output 

“Arcsin_result” of the main module. 

6.3.3 Simulation 

The Verilog design for the calculation of the arcsine is checked in the same way 

as the design for the division calculation using Vivado based on several 

simulations. First, the circuit is checked, then the calculation results are analyzed 

and finally the time behavior is defined. As an example, the schematic for the 
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circuit with 2 iteration steps (i = 3) is considered. The schematic generated by the 

Schematic function is shown in Figure 6.7. 

 

Figure 6.7 The schematic diagram of the arcsine calculation for i=3 

The schematic proves the implementation is basically correct. It is clear that three 

submodules have been created. The three external control signals “clk”, “enable” 

and “reset” are connected to the corresponding inputs of all submodules. The 

signal “Arg” with the argument to be evaluated is only connected to the first 

module. Furthermore, the first module receives a signal with a constant input 

(“x_in”), where the exact value is shown in the circuit diagram as a binary 

number. The two remaining inputs (“y_in” and “z_in”) are connected to the 

ground, implicating an assignment with 0. It can also be seen how the four internal 

signals are each connected from the submodule outputs to the corresponding 

inputs of the subsequent module. An exception is only the last module, where 

only one output is required, namely the one for the calculation result. 

In the next step, the signal characteristics and the calculation results of the 

individual modules are analyzed. The result for the simulation with 15 iterations 

(i=14) is shown in Figure 6.8. The process is similar to division calculation. The 

table at the left margin shows the individual signal designations and the values at 

the position of the yellow marker. The marker is located at the end of the first 

iteration run. 
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The three top signals are the control signals, which can change between the values 

0 and 1. At first, the “reset” signal is set to “0”, whereby all output signals and 

get the value “0”. Since “enable” permanently has the value “1”, it is possible to 

start the calculation after the change of the “reset” signal from “0” to “1”. The 

values to be calculated are assigned with the signal “Arg”. At first, this signal has 

the value “0”. Afterward, a sequence of values is assigned, whereby the change 

to the next value takes place in each case updating the input signals with the 

falling edge of the “clk” signal.  

It can be seen that after the value assignment, the signals between the modules, 

which all initially have the value 0, successively receive the calculation results of 

the first argument. Subsequently, calculation results are forwarded to the 

following iteration step. This means that the pipeline works as desired. 

 

Figure 6.8 Behavior simulation of the signals of the arcsine calculation for i=14 

In the following, the calculation process for an argument of 0.5 = 8192.2-14 is 

considered in detail. The results of the individual submodules are summarized in 

Table 6.4. Additionally, the relative deviation to the exact result of π/6 = 30° is 

given. 
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Table 6.4 Decimal arcsine calculation results with “Arg” = 0.5 

Nr. z_out(i)= Zi.214 Zi Error 

0 25736 1.570801 90.000° 200% 

1 10543 0.643494 36.870° -22.90% 

2 2516 0.153544 8.797° -70.68% 

3 6591 0.402254 23.047° -23.18% 

4 8636 0.527091 30.200° 0.67% 

5 7612 0.464612 26.620° -11.27% 

6 8124 0.495859 28.411° -5.30% 

7 8380 0.511484 29.306° -2.31% 

8 8508 0.519296 29.754° -0.82% 

9 8572 0.523203 29.978 -0.08% 

10 8604 0.525156 30.089° 0.30% 

11 8588 0.524179 30.033° 0.11% 

12 8580 0.523691 30.005° 0.02% 

13 8576 0.523447 29.991° -0.03% 

14 8578 0.523569 29.998° -0.01% 

After 15 iterations, a relative deviation of 0.01% is achieved. The calculation 

results shown correspond to the theoretical calculation, which is shown in table 

6.4. In this theoretical calculation, the decimal parts of the individual terms in the 

calculation formulas that exceed 14 binary decimal were deleted with rounding. 

Considering this restriction, which results from the selected number format, the 

individual results match exactly. Thus, the calculation is implemented correctly. 

To evaluate the correctness of the design for any arguments and the accuracy of 

the algorithm, further simulations are performed for different arguments with 

i=14. The simulation results are summarized in Table 6.5. Additionally, the exact 

result, which is calculated, as well as the relative deviation of the iteration result 

from these values is listed. 
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Table 6.5 Theoretical calculations of arcsin(0.5) 

i xi.214 yi.214 zi.214 ti.214 2-i 2.Arctan(2-i) di 

Initial values 16384 0 0 8192 - - 1 

0 0 32768 25736 16384 1 25736 -1 

1 32768 24576 10543 20480 0.5 15193 -1 

2 43008 6656 2516 21760 0.25 8027 1 

3 40672 17304 6591 22100 0.125 4075 1 

4 38350 22320 8636 22186 0.0625 2045 -1 

5 39708 19902 7612 22208 0.03125 1024 1 

6 39076 21138 8124 22213 0.015625 512 1 

7 38743 21747 8380 22215 0.0078125 256 1 

8 38573 22049 8508 22215 0.00390625 128 1 

9 38487 22200 8572 22215 0.001953125 64 1 

10 38443 22275 8604 22215 0.0009765625 32 -1 

11 38465 22238 8588 22215 0.00048828125 16 -1 

12 38476 22219 8580 22215 0.000244140625 8 -1 

13 38481 22209 8576 22215 0.0001220703125 4 1 

14 38479 22214 8578 22215 6.103515625E-05 2 1 

Table 6.6 Calculation results after 15 iterations for different arguments 

Nr. Arg Arg.214 Arcsin_result 

= z14.214 

z14 zexact Error 

1 0.25 4096 4138 14.471° 14.478° -0.05% 

2 -0.25 -4096 -4138  -14.471° -14.478° -0.05% 

3 0.75 12288 13892 48.581° 48.590° -0.02% 

4 -0.75 -12288 -13892 -48.581° -48.590° -0.02% 

5 0.01 164 164 0.574° 0.573° 0.17% 

6 0.001 16 16 0.056° 0.057° -1.75% 

7 2-13 2 0 0° 0.007° -100% 

8 1 16384 25736 90.000° 90.000° 0% 

9 -1 -16384 -25736 -90.000° -90.000° 0% 
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Simulations 1 to 4 show the results for different values with different signs. The 

results are independent of the sign of arguments. With the same amount of 

argument, an identical result is achieved. This is not only true for the results 

shown after 15 iterations, but also for each individual step of the iteration. In 

general, good accuracy is achieved for all arguments. 

For very small arguments, as in simulations 5, 6 and 7, the result is usually equal 

to the argument. In view of the fact that for very small angles the approximation 

relation applies 

sin φ φ
1
6
φ

1
120

φ ⋯
1

2n 1 !
φ ⋯ φ     6.4  

In simulations 8 and 9, the arcsine values for the maximum permissible arguments 

are determined. Here, the simulation leads to the correct result of π/2 = 90°.  

In general, it can be seen that the arcsin function can be calculated correctly and 

with high accuracy for all values by means of the double rotation CORDIC 

algorithm. Furthermore, a time simulation was carried out. This leads to the result 

that the arcsine calculation can be realized error-free with a clock frequency up 

to 100 MHz. 
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7 Rotation Angle Processing Unit 

This chapter presents the hardware architecture which is used to compute rotation 

angles by means of arcsine and division arithmetic implemented as CORDIC 

blocks. 

Figure 7.1 shows the module for the entire signal processing with its inputs and 

outputs. 

  

 

 

 

 

Figure 7.1 Block diagram “signalprocessing” module 

The input signals “DatenP0” to “DatenP135” as well as “processdata” of the 

“signalprocessing” module are connected to the ports of the AD7980 interface 

component.  The AD7980 interface component takes over access to all ADCs of 

the readout system via an SPI interface in 3-WIRE mode. These ADCs are used 

to convert the voltage signals of the readout system into digital values. The input 

signals “busysend_Angle90_0”, and “busysend_Angle135_45” as well as the 

output signals “Angle90_0”, “Angle135_45”, “sendangles”, are used for 

communicating and sending calculated angles to the PC via the “Datensendung” 

module. 

The exact function of the AD7980 interface and “Datensendung” modules will 

be discussed in more detail in the next chapter where integration of the 

“signalprocessing” module into the VHDL design is explained [9]. 
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Figure 7.2 shows the structure of the “signalprocessing” module. The module 

consists of five components, where “cnt_signalprocessing” corresponds to a 

counter, “sm_signalprocessing” to a state machine, “Preprocessing” to normalize 

the input signals and preprocessed for the angle calculation by the “Processing” 

module. The “Processing” module takes over the calculation of the required 

trigonometric function.  The result of the calculation is then prepared in the 

“Postprocessing” module.  

Explanations of the individual input and output signals of the modules can be 

found in the chapters of the respective modules. Since all modules have the input 

signals “clk” and “rst”, these are explained once for simplification: 

 “clk” is the system clock and has a frequency of 50MHz. 

 “rst” is an asynchronous active low reset signal which ensures that after 

implementation of the Verilog design on the FPGA all modules are reset.  

Figure 7.2 Structure of the “signalprocessing” module 

The function of each of the “signalprocessing” modules will be discussed in more 

detail in the following. 
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7.1  “preprocessing” module 

7.1.1 Functionality 

The “preprocessing” module reads data from the “AD7980” module and prepares 

the ADC values for the calculation of the angles. This includes the determination 

of gain and offset correction values for the POLDI sensor signals which are 

required to normalize the signals. The processing is done in several steps based 

on the method described in chapter 3. For this purpose, first, the module gathers 

some samples. During sampling, the input signals of all four channels are read 

out and difference signals are formed. For each difference signal formed in this 

way, the maximum and minimum values are determined to calculate the offset 

correction, as well as the gain factor coefficients. When the sampling process is 

completed, the normalized values are calculated for the new input signals. First, 

the difference between the signals of the new input signals is calculated and their 

value is compared with the maximum and minimum values of the initial sampling 

process. If these values are larger or smaller than the maximum/minimum values, 

they are considered as the new maximum and minimum values respectively, and 

then used to normalize the signals by a gain factor and an offset correction term. 

After that, the magnitude and the signs of the signals are separated. The 

normalized signals are sent to the “processing” module to calculate the arcsine 

function while the sign values are stored for 15 clock cycles and sent to the 

“postprocessing” module after the arcsine Cordic block has finished its 

calculation. 

Figure 7.3 shows the structure of the “preprocessing” module. The module 

consists of four modules, where “cnt_preprocessing” corresponds to a counter, 

“calc_preprocessing” is sequential logic which is used to find the maximum and 

minimum of the POLDI sensor signals, “divvend_preprocessing” module is an 

instance of the “divv_top” module explained in [24] is used to execute the gain 
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normalization, while the “fsm_preprocessing” module corresponds to a state 

machine. 

 

Figure 7.3 Structure of the “preprocessing” module 

The “preprocessing” component has the following input signals: 

“Enable” indicates the availability of new POLDI sensor signals. 

“DatenP0”, “DatenP45”, “DatenP90”, “DatenP135” are 16-bit unsigned 

vectors and contain the POLDI sensor data to be normalized. 

The “preprocessing” component has the following output signals: 

“start_proc” enables the “processing” module whenever normalized data has 

been prepared for processing. 
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“signp90_p0”, “signp135_p45” forwared the signs of calculated differences of 

the Poldi sensor signal channels P90/P0 and P135/P45 respectively. for further 

processing in the “postprocessing” component. 

Finaly “Norm_Datenp90_Datenp0” and “Norm_Datenp135_Datenp45” are 

the normalized differences of the Poldi sensor signal channels P90/P0 and 

P135/P45 respectively. 

This module contains two state machines that are operated concurrently. Figure 

7.4 and Figure 7.5 show the state diagram of the “fsm_preprocessing” modules. 

The state machine in Figure 7.4 is used to control the normalization process of 

the POLDI signals. While the state machine in Figure 7.5 is used for 

synchronizing the sign signals and the calculated angles in the “postprocessing” 

module. 

 

Figure 7.4 The state diagram of the “fsm_preprocessing” module 



116 
 

 

 

Figure 7.5 The state diagram of the “fsm_preprocessing” module 

In the state machine Figure 7.4, the states “s0”, “Max_Min_Diff” and 

“readsamples” are used for sampling.  When the signal “processdata” is equal to 

one, the state machine changes from the initial state “s0” to the “Max_Min_Diff” 

state. In this state, the signal “find_Max_Min” is set to one to find the maximum 

and minimum values. These values are formed by reading out the input signals of 

all four ADC channels and by calculating the differences “DatenP90-DatenP0” 

and “DatenP135- DatenP45”, which determine the gain factor coefficients. As 

long as the signal “finished_readsample” is not equal to one, the state machine 

changes to the “readsamples” state with the next rising clock edge, and the signal 

“samplecnt” is set to equal one, Thus the “cnt_preprocessing” module counts the 

number of samples. With the next rising clock edge, the state-machine changes 

again to the state “s0” and waits for the arrival of a new sample.  

If the signal “finished_readsample” is equal to one, then the process of collecting 

the samples is completed, and the process for calculating the gain value for the 

normalization factor is started by a transition to the next state “Gain_P90_P0”. 

Since divisions of fixed-point numbers are very hardware-intensive, gain 

coefficients are calculated one after the other. In this state, the signal 

“startdivv90_0” is set to one to enable the “calc_preprocessing” module and to 

forward the difference between the maximum and the minimum of the 
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“DatenP90-DatenP0” sampled sensor signals to the CORDIC division block. 

Since the “divvend_preprocessing” module takes 15 clock cycles to calculate the 

gain factor, it is required to count clock cycles. Thus, in the “s4” state 

“start_division” and “divvcnt” signals are set to one. The “start_division” signal 

is used to enable the “divvend_preprocessing” module calculates the gain factor 

and the “divvcnt” signal enables the “cnt_preprocessing” module to count the 

number of the rising clock edges. In turn the counter sets the signal “finisheddivv” 

equal to one with the sixteenth rising clock. If this is the case, the state machine 

switches with the next rising clock edge to the state “wait_1cyc” in which the 

signal “readGainsignal_90_0” is set to one to forward the calculated result to the 

next processing entity. 

The gain coefficient for the input signals “DatenP90” and “DatenP0” is calculated 

with the following equation in the “divvend_preprocessing” module. 

Gain_value90_0 
2

MAX_daten90_0 MIN_daten90_0
            7.1  

The “Gain_value135_45” is calculated with the same equation by using the 

“MAX_daten135_45” and “MIN_daten135_45” signals instead. Since the input 

signal values are in 16-bit and are interpreted as fixed-point format, the 

“divvend_preprocessing” module is also considered a fixed-point number. The 

divisor is defined by the maximum magnitude of the difference signal and is 

transmitted as an 18-bit data word. 

For the offset correction of the P90_P0 difference signal, the following equation 

applies: 

Offset90_0 
MAX_daten90_0 MIN_daten90_0

2
                     7.2  

which can be realized in hardware by addition and a shift operation.  
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After calculating the gain value for the difference signal DatenP90-DatenP0, the 

state changes to the “Gain_P135_P45” state to calculate the gain value for the 

difference signal DatenP135-DatenP45. In sequence, the explained transition 

condition, as well as the operation of the explained states, are repeated another 

time in the states, “Gain_P135_P45”, “s5” and “s8”, to calculate the gain factor 

of the DatenP135-DatenP45 difference signal, whereby in the states the according 

signals are set, which are related to the DatenP135-DatenP45 difference signal. 

In these states the signal “startdivv135_45” is set to one to enable the 

“calc_preprocessing” module and to forward the difference between the 

maximum and the minimum of the “DatenP135-DatenP45” sensor signals to the 

Cordic division block. The “start_division” signal enables the 

“divvend_preprocessing” module to calculate the gain factor and the “divvcnt” 

signal enables the “cnt_preprocessing” module to count the number of the rising 

clock edge. The signal “finisheddivv” indicates again that the calculation of the 

gain factor is completed. With the next rising clock edge, the state-machine 

changes to the state “s8” in which the signal “readGainsignal_135_45” is set to 

one and the calculated result is taken over by the “calc_preprocessing” module. 

With the next rising clock edge, the state-machine switches to the “s6” state and 

the “calc_Norm” and “norm_cnt” signals are set to one. The “calc_Norm” signal 

enables the “calc_preprocessing” module to normalize the input signals by 

applying the calculated offset and gain factors. Since the process of normalization 

takes three clock cycles, it is required to wait until the result is ready. For this 

purpose, a counter is activated by “norm_cnt”. If the signal “finished_normcnt” 

is set to one, the three clock cycles are completed and the normalized result is 

ready. Then the state-machine changes to the “s1” state and in this state the 

signals “start_proc” and “senddata” are set to one. The “start_proc” signal enables 

the “processing” module and the normalized values of the input signals are 

forwarded to the “processing” module by the “senddata” signal. 
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As the calculation of the arcsine function in the “processing” module takes time, 

a synchronization between the calculated angles and the corresponding signs in 

the “postprocessing” module is required and implemented by the state-machine 

shown in Figure 7.5.  

The initial state of this state-machine is “s2”. The “start_proc” signal is set to one, 

when the calculated normalized values are ready and as a consequence the state-

machine changes to state “s3”. In this state, the state-machine waits until the 

signal “finished_signdelay” is set to one, to ensure that the signs are sent to the 

“postprocessing” module after 15 clock cycles, which corresponds to the amount 

of clocks cycles that are required to calculate the arcsine function in the 

“processing” module. 

Each new sample requires 1520 ns for readout over the ADC interface. This gives 

76 clock cycles. In addition, the “preprocessing” module requires 42 additional 

clock cycles. 

7.1.2 Simulation of the Preprocessing module 

In the following simulations, only signals of the “preprocessing” module that are 

relevant for the operation of the sequence are shown.  

 

Figure 7.6 Simulation of the sampling process in the “preprocessing” module assuming 10 

samples 
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Figure 7.6 shows a simulation of the sampling process assuming 10 samples in 

the “preprocessing” module. It can be seen that when the signal “rst” is set to zero 

all signals have the value of zero. While this signal is set the to a value of one, if 

the “proceessdata” signal is at a high level, the four input signals “DatenP0”, 

“DatenP45”, “DatenP90” and “DatenP135 are read out and the difference signals 

are formed to find the maximum and minimum values. During the sampling, the 

signals “MAX_daten90_0”, “MIN_daten90_0”, “MAX_daten135_45” and 

“MIN_daten135_45” store the maximum and minimum values, while the output 

signals receive a value of zero. 

 

Figure 7.7 Simulation of normalized results in the “preprocessing” module 

Figure 7.7 shows a simulation of the normalized values. When the “processdata” 

signal reaches a high level, the signals “DatenP0”, “DatenP90”, “DatenP45” and 

“DatenP135” are read out and stored. The difference between the signals is 

calculated and their value is compared with the maximum and minimum values 

obtained from the sampling. If each of the calculated difference values is larger 

or less than the maximum or minimum values, it is considered as the new 

maximum or minimum, respectively. Then the offset values (equation 7.2) are 

calculated using the maximum and minimum values and stored in the 
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“offset90_0” and “offset135_45” signals. The difference between the maximum 

and minimum values related to the appropriate sets are then saved in the 

“MaxMinDiff” signal for use as the denominator of the normalization factor. 

Furthermore, the difference between the input signals from the offset is stored in 

the “datenDiff” signal as the nominator of the division. Then these signals are 

sent to the “divvend_preprocessing” module for calculating the gain factor. It can 

be seen that values are processed one after the other to calculate the gain 

coefficients. 

After completing the gain coefficients calculations, the “start_proc” signal is set 

to a high level, and with the edge of the next rising clock edge, the normalized 

values of the input signals are assigned to the output signals 

“Norm_Datenp90_Datenp0” and “Norm_Datenp135_Datenp45” and the 

“start_proc” signal takes a low level again. Furthermore, 16 clock cycles later the 

signals “signP90_P0" and “signP135_P45” are assigned their final values. 

 

Figure 7.8 Self checking simulation of normalized results in the “preprocessing” module 

A self-checking simulation is executed. The simulation results are shown in 

Figure 7.8. In general, it can be seen that the normalization process is calculated 

the correct results with high accuracy for all values.  
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7.2  “Processing” module  

The “processing” module contains two “Arcsine” CORDIC modules to calculate 

the arcsine function of the normalized values, which are generated from the 

“preprocessing” module as described in chapter 7.1.1. 

7.2.1 Functionality 

The “processing” module calculates angles for normalized values using the 

Arcsine function.  

Figure 7.9 shows the structure of the “processing” module. The module consists 

of four modules, where “cnt_processing” corresponds to a counter, the 

“arcsin_end_90_0” and “arcsin_end_135_45” modules are instances of the 

“arcsin_top” module and it performs the calculations of the arcsine function. In 

addition, the “sm_processing” module corresponds to a state machine. 

 

Figure 7.9 Structure of the “processing” module 

The “processing” module has the following input signals: 

“start_proc” enables the “processing” module to start the calculation of angles.  
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“Norm_Datenp135_Datenp45”, and “Norm_Datenp90_Datenp0” are 16 bits 

signed signals and contain the normalized data as an input argument of the arcsine 

function. 

The “preprocessing” component has the following output signals: 

“start_post” is used to enable the “postprocessing” module. 

“Angle_90_0”, and “Angle_135_45” are 16 bits signed signals which hold the 

angle calculation results and are forwarded for further processing to the 

“postprocessing” module. 

 

Figure 7.10 State diagram of the “sm_processing” module 

Figure 7.10 shows the state diagram of the “sm_processing” module. This state 

machine is initialized to the state “s0” after reset. If the “start_proc” signal is 

equal to one, the state machine changes from state “s0” to state “s1”. In this case, 

the “enable_Arcsinblock” and “start_cnt” signals are set to one. The 

“enable_Arcsinblock” signal activates the “arcsin_end” modules, and the 

“start_cnt” signal enables the “cnt_processing” module to count the number of 

rising clock edges. 

The “arcsin_end” module takes 15 clock cycles to perform the calculations. When 

the counter reaches 15, the signal “finished_cnt” is equal to one, and with the next 

rising clock edge, the state-machine changes to the state “s2”. In this state, the 
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“Enable_post_proc” signal takes a high level to enable the “postprocessing” 

module. 

Finally, with the next rising clock edge, the state-machine switches to the state 

“s0” and waits until the “start_proc” signal is activated. 

7.2.2 Simulation 

In the following simulations, only signals of the “processing” module are shown.  

 

Figure 7.11 Simulation result in the “processing” module 

Figure 7.11 shows a simulation of the “processing” module. It can be seen that 

when the “start_proc” signal is at a high level, with the next rising clock edge the 

input signals “Norm_Datenp90_Datenp0” and “Norm_Datenp135_Datenp45” 

are read-in as arguments of the arcsine function. Furthermore, the “start_cnt” and 

“enable_Arcsinblock” signals are set to activate the “arcsin_end” modules and 

the “cnt_processing” module. These signals are activated for 15 clock cycles until 

the calculation of the Arcsine function is completed. When the counter reaches a 

value of 15, the signal “finished_cnt” is set to one and the calculation results are 

assigned to the output signals. With the next rising clock edge, the “start_post” 

signal is set to one and enables the “Postprocessing” module for further 

processing. 

Figure 7.12 shows self-checking simulation results of all possible input signals in 

the “Processing” module. 
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Figure 7.12 Simulation results of all possible input signals in the “Processing” module 

In general, the simulations show that the design works as desired with high 

accuracy for all values, while the maximum deviation between the calculated 

results and the expected values is less than 0.1 degree. 

7.3  “Postprocessing” module 

The “postprocessing” module performs the angle mapping and implements the 

case discrimination for the angle calculation described in chapter 3. The 

“postprocessing” module receives the angles of the “processing” module and the 

corresponding signs from the “preprocessing” module. With these signs, the 

module checks to which range the angles have to be mapped. 

7.3.1 Functionality 

The “postprocessing” module generates the final results for the rotation angle 

extracted from the POLDI sensor signals. Figure 7.13 shows the structure of the 

“postprocessing” module. The module consists of three submodules, where 

“cnt_postprocessing” corresponds to a counter, the “sr_post_processing” module 

calculates the angles and the “sm_postprocessing” module corresponds to a state 

machine. 
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Figure 7.13 Structure of the “postprocessing” module 

The “postprocessing” module has the following input signals: 

“Enable_post” enables angle range mapping in the postprocessing module.  

“readangles” indicates that the sign signals are ready to be read, and also enables 

the “sr_post_processing” module to read-in the input angles. 

 “signP90_P0” and “signP135_P45” are sign signals calculated by the 

“preprocessing” module. 

“Angle_90_0” and “Angle_135_45” are 16 bits signed signals and contain the 

angle results of the “processing” module. 

The “postprocessing” component has the following output signals: 

“output_Angle_90_0” and “output_Angle_135_45” are 16 bits unsigned 

signals and contain the calculated rotation angles. 
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Figure 7.14 State diagram of the “sm_postprocessing” module 

 

Figure 7.15 State diagram of the “sm_postprocessing” module 

This module contains two state machines that are executed concurrently. Figure 

7.14 and Figure 7.15 show the state diagrams of the “sm_postprocessing” 

module.  

The state machine in Figure 7.14 is used to activate the “sr_post_processing” 

module for the read-out of the output angles. These angles to the “Datensendung”, 

which is explained in the next chapter for transmission to the PC. Meanwhile the 

state machine in Figure 7.15 controls the angle mapping of the input signals.  

The state-machine shown in Figure 7.14 is initialized in the state “s5” after reset.  

When the signal “readangles” is equal to one, the state machine changes from the 
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state “s5” to the state “s6”. In this state, the signal “read” is set to one to read-out 

the output angle values.  The state-machine changes to the state “s5” and waits 

for the “readangles” signal to reactivate. 

Figure 7.15 shows the state diagram of the “sm_postprocessing” module for the 

angle range mapping. This state-machine is initialized in the state “s0” after reset. 

If the “Enable” signal is equal to one, the state machine changes to the “mapping” 

state. In this state the signals “signP90_P0” and “signP135_P45” are investigated. 

As explained in chapter 2 the angle can be located in four different ranges (I, II, 

III, IV) These ranges are represented in the state-machine by four states (s1, s2, 

s3, s4). If both sign signals have a value of zero, the next state is “s1” and the 

signal “S1” are set to one. If the signal “signP90_P0” is one and the signal 

“signP135_P45” is zero, the state-machine changes to state “s2” and the signal 

“S2” is driven to high level. In the case that both sign signals have a value of one, 

the next state is “s3” and the signal “S3” is activated, and when the signal 

“signP90_P0” is zero and the signal “signP135_P45” is one, the next state is “s4” 

and the signal “S4” is set to one. 

In all four states, the “Enable_sr” and “cal_cnt” signals are set to one. The 

“Enable_sr” signal activates the “sr_post_processing” module to calculate the 

angles according to the chosen range and the “cal_cnt” signal enables the 

“cnt_postprocessing” module to count the rising clock edges. As the calculation 

of angles takes 3 clock cycles, the signal “finished_calcnt” is set to one when the 

counter reaches a value of 3, and with the next rising clock edge, the state changes 

to the state “s0”. 

7.3.2 Simulation 

In the following simulations, only relevant signals of the “postprocessing” are 

shown.  
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Figure 7.16 shows the simulation result of the “postprocessing” module by setting 

the input signals “Angle_90_0” = 14836 and “Angle_135_45” = -714 and 

investigating the result of the rotation angle calculation for all possible 

combinations of the sign signals. 

 

Figure 7.16 Simulation result in the “postprocessing” module 

When the “Enable_post” signal is at a high level, the input signals “Angle_90_0” 

and “Angle_135_45” are read in. With the next rising clock edge, the 

“signP90_P0” and “signP135_P45” signals are read-in to determine the correct 

range of the angles. In the first iteration both sign signals are set to zero. 

Therefore, the next state is “s1” and the signals “S1”, “Enable_sr” and “cal_cnt” 

are set to one and the angles are calculated in the next step. As the angle mapping 

process takes 3 clock cycles, the “cal_cnt” signal is activated for 3 clock cycle 

until the calculations is completed. Then the “finished_calcnt” signal is set to one 

and in the next rising clock edge the calculated results are assigned to the output 

signals “output_Angle_90_0” and “output_Angle_135_45”. This process is 

repeated for the other three combinations of the sign signals, and in turn instead 

of the “S1” signal, signals, “S2”, “S3” and “S4” are set to high respectively. 

The individual results of the simulation show that the calculation is performed 

correctly. In addition, to evaluate the correctness of the design for different input 

angles and the accuracy of the algorithm, further simulations are performed a self-
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checking testbench for all possible input values of the “postprocessing” module. 

The simulation results are summarized in Figure 7.17.  

 

Figure 7.17 Simulation results for different input values in the “postprocessing” module 

As can be seen from Figure 7.17 no deviation of the expected results is detected. 

In general, it is observed that the “Postprocessing” module works with high 

accuracy for all values, and the result is achieved without error for both output 

angles. This module takes 6 clock cycles to prepare the final rotation angle results 

in total. 

7.4  “sm_signalprocessing” module 

7.4.1 Functionality 

This module controls the “signalprocessing” module and manages the 

communication between the “signalprocessing” module and the “Datensendung” 

and “AD7980” modules.  

It contains two state machines that are executed concurrently. Figure 7.18 and 

Figure 7.19 show the state diagrams of the “sm_signalprocessing” module.  
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Figure 7.18 State diagram 1 of the “sm_signalprocessing” module 

 

Figure 7.19 State diagram 2 of the “sm_signalprocessing” module 

The state-machine in Figure 7.18 is used in the “preprocessing” module to control 

the angle calculation process. This state machine is initialized in the state “s0” 

after reset.  When the signal “processdata” is set to one, the state-machine 

switches to the state “s1”. In this state, the “enable” and “start_cnt” signals are 

set to one.  The “enable” signal triggers the “preprocessing” module to start the 

process of angle calculation, while the “start_cnt” signal enables the 

“cnt_signalprocessing” module to count the number of rising clock edges.  

Figure 7.19 shows the hierarchical state diagram 2 of the “sm_signalprocessing” 

module. This module controls the angle handover process from the 

“signalprocessing” to the “Datensendung” modules. When the “finished_cnt” 

signal is equal to one, the angle calculation process is completed and the angle 

values are ready to be transmitted to the PC via the “Datensendung” module. 
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 “s2” is the initial state. If the signal “finished_cnt” is equal to one, the state-

machine changes to the state “s3”. In this state, the “sendangles” signal is set to 

one to inform the “Datensendung” module that the angles have been calculated 

and are ready to be sent to the PC. In this state the state-mchine waits until the 

“busysendangle90_0” or the “busysendangle135_45” signal is high. In this case, 

the state switches to the state “s4” and the “readangle” signal is set to one. The 

“readangle” signal is connected to the “postprocessing” module, which notifies 

the module to assert the angle values at the output ports at this time. The 

“busysendangle90_0” and “busysendangle135_45” signal whether the 

component is busy sending the angle data. After the corresponding angle has been 

sent, it is set to zero again. If both signals “busysendangle90_0” and 

“busysendangle135_45” have a value of zero, the state-machine changes with the 

next rising clock edge, to the state “s2”. 

The “sm_signalprocessing” module has the following input signals: 

“processdata” indicates availability of new signals. 

“busysendangle90_0” and “busysendangle135_45” indicate whether the 

module is busy sending angle data. 

The “sm_signalprocessing” module has the following output signals: 

“sendangles” informs the “Datensendung” module that the angle data has been 

calculated and is ready to be sent to the PC. 

7.5  “signalprocessing” simulation 

In the following simulations, only relevant signals of the “signalprocessing” 

module are shown.  

Figure 7.20 shows a simulation of the “signalprocessing” module for the input 

signals “DatenP0” =1324, “DatenP45” =65535, “DatenP90” =53417 an 
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“DatenP135” = 32403. This simulation is considered with maximum and 

minimum values of 65535 and -65535, respectively. 

 

Figure 7.20 Simulation in the “Processing” module 

It can be seen that when the “processdata” signal is at a high level, the input 

signals “DatenP0”, “DatenP45”, “DatenP90” and “DatenP135” are read-in and 

the “signalprocessing” module starts to calculate the angles. The individual 

calculated result of each module can be seen in this simulation. In addition, the 

calculation is performed correctly, and results are as expected.  

A self-checking simulation for investigating the results for all possible input 

values has been executed. The simulation results are shown in Figure 7.21.  

 

Figure 7.21 Simulation results for different input values in the “postprocessing” module in a 

self-checking testbench 
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In general, the simulations show that the design calculates the correct results with 

high accuracy for all values, while the maximum deviation between the calculated 

results and the expected values is less than 0.1 degree. 

7.6 Summary 

In this chapter, the architecture and the Verilog source code for the angle 

calculation are introduced. The ADC interface provides values of the sampled 

POLDI signals to the “preprocessing” module every 1520 ns. At the beginning of 

the operation, the “preprocessing” module first determines the required gain and 

offset correction values, and then calculates the normalized values. These values 

are sent to the “Processing” module, which calculates the required arcsine values 

from the “arcsin_top” module and forwards them to the “Postprocessing” module. 

The “Postprocessing” module determines the correct angle region and calculates 

the rotation angles.  

Calculating the output angles in the “signalprocessing” module requires a total 

amount of 64 clock cycles. The “Preprocessing” module requires 42 clock cycles, 

the calculation in the “Processing” module takes 16 clock cycles in the 

“Processing” module, while the “Postprocessing” module requires 6 clock cycles 

to calculate the expected values.  
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8 Integration of the “signalprocessing” module into the POLDI readout 

system 

When the POLDI sensor is irradiated with linearly polarized light, each diode 

supplies a different photocurrent whose current intensity depends on the angle 

between the polarization plane of the incident light and the orientation of the 

polarization filter. Therefore, each photocurrent flows into a separate Trans-

Impedance Amplifier (TIA) and different voltages are applied to separate ADCs. 

These digitized signals are made available to the digital signal processing module 

called “signalprocessing” which is implemented on an FPGA and can extract the 

angle information out of the incident light sent to the PC using the 

“Datensendung” module. For this purpose, the “signalprocessing” module, which 

is described in Chapter 7, is integrated into the POLDI sensor readout and control 

system which has been implemented as a VHDL design [9]. 

This chapter presents the integration of the “signalprocessing” module in the 

POLDI sensor readout and control system. 

8.1 Poldi readout and control system 

The design consists of eight interconnected main modules. Each module of the 

design contains an asynchronous reset asserted by the signal “rst” and a clock 

signal called “clk”. The “clk” signal corresponds to the system clock of 50 MHz 

and the “rst” signal ensures that the modules are reset and that all state-machines 

return to their initial states. 

Figure 8.1 shows the interconnection of the individual modules of the POLDI 

sensor readout and control system. 
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Figure 8.1 Structure of the VHDL Design [9] 

The ports of the right three components are connected to pins of the DACs and 

ADCs available on the Cmod A7 board described in chapter 5.5. These ports are 

given the same name as the nets connected to the DACs and ADCs on the Cmod 

A7 board. 

The main function of the individual modules is briefly explained below. The 

operation of these modules is explained in detail in [9]. 

 “startreset” ensures that the modules are reset after a configuration of the 

FPGA. 
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 “avr_interface” is provided by the manufacturer of the Mojoboard of the 

company “Embedded Micro” and manages the communication between 

the microcontroller and the FPGA via an UART interface. 

 “Zuweisung” implements a communication protocol and provides and 

receives data from and to the “avr_interface”. It establishes 

synchronization between the application software and the FPGA logic and 

forwards control signals and data to the components responsible for 

communication with the DACs and ADCs on the boards described in 

chapter 5. 

 “Ansteuerung” and “AD5686” are responsible for the control of the DAC 

of type “AD5686”. 

 “AD5544” controls the five separate “AD5544” DACs. 

 “AD7980” controls the data readout of eight different ADCs and stores the 

read data. For this purpose, it contains two modes. In one mode, a single 

readout is performed and the readout data is then sent to the PC using the 

“Datensendung” module, while in the alternative mode a continuous 

readout of the ADCs is performed.  

 “Datensendung” with this module the data read out from the “AD7980” 

ADCs can be send to the PC using the “Datensendung” and “avr_interface” 

modules.  

8.2 Integration of the Signal Processing Unit 

The angle calculation is based on the digital signals digitized by the Analog-to-

Digital Converters (ADCs). The “AD7980” controls the conversion process of all 

ADCs and reads-in the digitized data. This module is operated in the continuous 

readout mode for the signal processing in the FPGA and the extracted rotation 

angles are also transmitted continuously to the PC. The data read in from the 
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ADCs are assigned to the output signals “datenp0”, “datenp45”, “datenp90” and 

“datenp135”. After a conversion and readout cycle is completed, the 

“processdata” signal is set to one to indicate that the system is ready for further 

signal procssing and in addition the next conversion and readout cycle of the 

ADCs is started immediately.  

The output signals “datenp0”, “datenp45”, “datenp90” and “datenp135” as well 

as “processdata” of the “AD7980” module are connected to the “DatenP0”, 

“DatenP45”, “DatenP90”, “DatenP135” and “processdata” ports of the 

“signalprocessing” module respectively. The signal processing is performed in 

the “signalprocessing” module, and the angles are calculated. To send the 

calculated angles to the PC, a connection between the “signalprocessing” and 

“Datensendung” modules is necessary. For this purpose, the “Datensendung” 

module must be modified. In the following, the “Datensendung” module and the 

applied modifcations are described. 

8.2.1  “Datensendung” module 

8.2.1.1 Functionality 

With this module, data can be prepared for transmission data can be prepared for 

transmission to the PC via the module “avr_interface”. The calculated angles 

have to be fed into this module. 

Figure 8.2 shows the structure of the “Datensendung” module. This module 

contains the “sm_Datensendung” module, which corresponds to a state machine, 

and the “ff_Datensendung” module. 
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Figure 8.2 Structure of the “Datensendung” module 

The “Datensendung” module has the following input signals: 

 “sendangles” indicates whether data is to be sent to the PC from the 

“signalprocessing” module. The “sendangles” signal should be set to zero 

when both signals “busysendangle90_0”, “busysendangle135_45” are 

high. 

 “angle90_0” and “angle135_45” contain the data of the calculated angles, 

which are provided by the “postprocessing” module. 

Output signals of the “Datensendung” module: 
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 “busysend_Angle90_0” and “busysend_Angle135_45” indicate whether 

the module is busy sending angle data provided form the 

“signalprocessing” module. 

 

Figure 8.3 Hierachical state-diagram of the state-machine in the module “sm_Datensendung” 

Figure 8.3 shows the state-machine of the “sm_Datensendung” module. Each of 

the states control the data transmission to the PCs. The states “P0_P90”, 

P45_P135”, “I0_I2” and “I1_I3”, control the data tranmissiom readout from the 

ADCs to the PC, while the “angles” state controls the transmission of the angle 

by “signalprocessing” module to the PC. 

From the initial state “notbusy” the state is changed to “angles” with the next 

rising clock edge, if the signal “sendangles” equals one. If the signal is not equal 

to one, the signals “senddata” corresponding to the ADCs are checked, which is 

explained in detail in [9].  
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Figure 8.4 Hierarchical state “angles” of the “sm_Datensendung” module 

Figure 8.4 shows the hierarchical state “angles” of the “sm_Datensendung” 

module. In the first state “s48”, the signals “angle90_0msb” and 

“busysendangle0_90” are set to one. Thus, the module “ff_Datensendung” 

assigns the eight MSBs of the vector “angle90_0” to the vector “tx_data” with 

the next rising clock edge.  



142 
 

When the module “avr_interface” is ready to send data over the UART interface, 

the state machine changes from state “s48” to state “s64” with the next rising 

clock edge, in which the signals “new_tx_data” and “busysendangle90_0” are set 

to one. Thereby “tx_data” contains the eight MSBs of the vector “angle90_0”. 

While the “avr_interface” module is busy sending the data, the state machine 

changes to the state “s65” with the next rising clock edge. From this state, if the 

“avr_interface” module is ready to send data, the state machine changes to the 

state “s66” with the next rising clock edge. In this state, the signals 

“angle90_0lsb” and “busysendangle90_0” are set to one. Thus, the module 

“ff_Datensendung” the eight LSBs of the vector “angle90_0” to the vector 

“tx_data” with the next rising clock edge.  

The explained three state conditions are repeated two more times in the following 

states, whereby in the states “s50” and “s57” the signals “busysendangle135_45” 

and “angle135_45” are set, which ensures that the vector “tx_data” receives the 

appropriate data to be sent. The successor states of the state “s60"” ensures that 

first the eight MSBs, then the eight LSBs of the vectors” angle90_0”, then the 

eight MSBs, and finally the eight LSBs of the vector “angle135_45” are sent to 

the PC. 

8.2.2 Design structure with integrated signal processing unit 

Figure 8.5 shows the interconnection of the individual modules of the POLDI 

readout and control system after integration of the signal processing unit. It can 

be seen that the “signalprocessing” module is included on the design top level 

and is connected to the “AD7980” and “Datensendung” modules. 
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Figure 8.5 Structure of the integrated Design 

After integration of the “signalprocessing” module into the POLDI readout and 

control system, the FPGA available on the Mojo V3 FPGA development board 

which has been used in a previous work [9], is not sufficient for the design im-

plementation because of restricted logic resources. For this reason, the Cmod A7 

board from Digilent with 48-pin and a Xilinx Artix 7 FPGA is used instead. The 

Cmod A7 board includes a single 12 MHz clock input. However, the input clock 

can be fed to a Mixed-Mode Clock Manager (MMCM) to generate clocks of var-

ious frequencies. The MMCM is configured via the Clocking Wizard IP core such 

that it generates the 50 MHz clocks required for the design.  
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8.2.3 Simulation 

In the following simulations (Figure 8.6), only relevant signals of the Poldi 

readout and control system with integrated signal processing unit are shown.  

 

Figure 8.6 Simulation of Integrated Design 

It can be seen that the angle signals calculated angles in the “signalprocessing” 

module are sent to the “avr_interface” module using the “tx_data” vector. First, 

the eight MSB then the eight LSBs of the vector “Angle90_0”, then the eight 

MSBs, and finally the eight LSBs of the vector “Angle135_45” are sent to the 

PC. The simulations show that the design works as desired. 

8.3 Summary  

In this chapter, the “signalprocessing” module is integrated into the POLDI 

sensor readout and control system. When the POLDI sensor is irradiated with 

linearly polarized light, each diode supplies a different photocurrent. Each 

photocurrent flows into a separate Transimpedance Amplifier (TIA) and different 

voltages are applied to separate ADCs. The ADC interface provides values of the 

sampled POLDI signals to the “signalprocessing” module, which calculates the 

data angles of the incident light and sends them to the PC using the 

“Datensendung” module.  

 



145 
 

9 QT widget application for sensor readout control 

As a preliminary work, a graphical user interface (GUI) was designed for 

controlling different digital-to-analog converters (DACs) by means of the QT 

application. In addition, by selecting different analog-to-digital converters 

(ADCs), their voltages are displayed in the GUI [9]. In this project, this GUI is 

extended to control and adjust the polarizer and light source, as well as to read 

and display the intensity signals and calculated angles. 

9.1 Main Window 

The main window consists of five fields, each separated by lines. Figure 9.1 

illustrates the Main window of the GUI. 

 

Figure 9.1 Main window of the GUI 

9.1.1 AD5686 field 

The field located at the top left is designated for controlling the “AD5686” type 

DAC. For the selection of the channels of the “AD5686” DAC, four “Radio 

Buttons” have been employed. Labels with the names of the DAC channels (A to 

D) were positioned above each individual button. Additionally, a label with the 

text “Kanäle” has been placed to the left of the buttons to indicate that these 

buttons should be used for channel selection. By deactivating the checkmarks in 

the “auto-exclusive” boxes in the properties of the four radio buttons, it is possible 
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to activate multiple buttons simultaneously. This allows the user to control 

several channels concurrently within the GUI.   

Two input fields have been added to facilitate the entry of command bits and 

voltage. These fields are appropriately labeled next to them, with the text 

“Command Bits (Input binary):” providing clarity to the user regarding the entry 

of command bits in binary format, and “Voltage {0-2999} [mV]” indicating that 

the voltage input is measured in Millivolts and can range between 0 and 2999 

mV. 

To accommodate the four command bits and the requirement for the input voltage 

to be in Millivolts with a maximum length of four characters, the maximum 

allowable character length for these fields has been limited to four. 

Additionally, a “Push Button” labeled as “Senden” has been created to enable the 

transmission of the entered data. 

Upon pressing the “Senden” button, if no DAC channel is chosen or if there's 

incorrect input in either of the two input fields, a new window emerges, 

displaying an error message.  

9.1.2 Mode selection field 

This field is located at the center-top of the GUI and is designed for controlling 

the mode of the “AD7980” type ADC. 

As mentioned previously, there are two modes for reading out the ADCs: normal 

mode and continuous mode. In the normal mode, a single readout of the selected 

ADCs is performed, and the readout data is then transmitted to the PC. 

Conversely, the continuous mode is utilized for signal processing in the FPGA 

and extracting rotation angles. It's important to note that all ADCs are read out in 

this mode. 
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Before reading out the ADC data, it's necessary to set it to either normal mode or 

continuous mode. For this purpose, two Radio Buttons for selection have been 

positioned, labeled with the corresponding mode names. Additionally, a Push 

Button labeled “Mode_Set” has been included to transmit the chosen mode, 

which then configures the ADCs to the specified mode. 

A Push Button labeled as “reset” has been placed to allow for the reset of all 

configurations within the GUI. Furthermore, the “Angle Measurement” button is 

employed to perform angle readouts in continuous mode. A new Qt Designer 

form class is incorporated into the project for of this button. Figure 9.2 depicts 

the window that opens upon pressing the “Angle Measurement” button.  

Within this window, two buttons can be found: one to initiate continuous signal 

readings and the other to halt the reading process. Accompanying these buttons 

are two LCD Number widgets, designed to display the calculated angles within 

the FPGA. Furthermore, a QwtPlot has been integrated to visualize the acquired 

angles in real-time plot. 

 

Figure 9.2 “Angle measurement” window 
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9.1.3 AD7980 field 

This section serves the purpose of selecting ADCs to perform voltage readings 

and exhibit the applied voltage values. Considering that two, four, six, or eight 

ADCs can be simultaneously read, each row is equipped with two “Text Browser” 

fields to present the voltages for two ADCs, accompanied by a corresponding 

“Radio Button” for selection. 

Adjacent to the voltage fields for the ADCs, labels indicating the ADC names 

along with “[V]” have been included. This arrangement ensures clarity in 

associating each button with its corresponding ADC, while the displayed voltage 

is expressed in volts. The ADC names are derived from the pins of the ADCs 

from which data is obtained. 

Positioned to the right of this section is a Push Button labeled “Lesen” designed 

to initiate the reading of the chosen ADCs. Subsequently, the voltage values 

corresponding to the ADC readings are presented within their respective fields. 

Notably, the activation of multiple buttons simultaneously is feasible. 

Additionally, it's necessary to set the normal mode in the “Mode selection” field 

before reading the voltages. This entails selecting the “normal mode” initially and 

pressing the “Mode_Set” button, which are the essential settings for normal 

readings sent to the ADCs to establish the mode. 

If the “Lesen” button is pressed without selecting the mode in the 

“Mode_selection” field or without selecting an ADC, a corresponding window 

with an error message is triggered. 

9.1.4 AD5544 field 

The lower section within the main window of the GUI serves as the interface for 

configuring the five “AD5544” type DACs. This area is divided into five distinct 

columns, each demarcated by lines. Within each column, four sliders have been 
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positioned, accompanied by an underlying progress bar that visually illustrates 

slider adjustments. 

To the left of this arrangement, a label bearing the text “Channel:” has been 

placed, followed by labels displaying the names of the DAC channels. At the 

column's uppermost part, a label is positioned, featuring the name of the 

respective “AD5544” DAC. 

Following the DAC names, which directly impact the voltages of the ADCs, 

additional labels have been included, identifying the corresponding ADCs. These 

labels are enclosed in brackets adjacent to the DAC designations. This design 

provides clear insight into the connection between the sliders and the specific 

channels of each DAC, ultimately influencing the voltage of corresponding 

ADCs. 

9.1.5 Measurement and Test field 

This section is positioned on the right side of the main window of the GUI and is 

designated for the configuration, control, measurement, and testing of the 

polarizer and light source. This field comprises seven buttons which trigger the 

opening of new windows corresponding to their designated tasks. To accomplish 

this, a new Qt Designer form class is incorporated into the project for each of 

these buttons. Further details about the functionality of these buttons are 

elaborated upon in the subsequent sections. 

9.1.5.1 “Linearity_Test” button 

The “Linearity Sweep” button is utilized to present the linearity of the readout 

voltage measurements. This is achieved by adjusting the Gain and Offset values 

within the DAC settings. Furthermore, it visually demonstrates the 

interdependence of gain and offset. Figure 9.3 shows the “Linearity_Test” 

window. 
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Figure 9.3 “Linearity_test” window 

This window comprises three sections. The first section, named “Sweep Type,” 

incorporates two radio buttons labeled “Gain” and “Offset”. The selection of one 

of these options, such as “Gain,” permits the measurement of Gain as a relative 

function of Offset, or vice versa. 

The second section, titled “Sweep Configuration in DAC Values [0-65535]” 

features three input fields designated as “Start”, “Stop” and “Steps”. These input 

fields serve the purpose of defining the parameters for the sweep process, 

including the start and stop values along with the increment steps. 

The third section, denoted as “Gain/Offset [0-65535],” is employed to specify the 

DAC for measurement, with a range from 0 to 65535. Adjacent to each DAC 

name is an input field where the value for the selected channel in the “Sweep 

Type” section can be input. The allowable range for this input is from 0 to 65535. 



151 
 

Additionally, the window features three buttons: “Run” which initiates the 

measurement process execution; “Stop” which halts the ongoing measurement 

process; and “Reset” which restores the DAC configurations to their default 

settings. An integrated QwtPlot is also present to visually represent the ongoing 

measurement process. 

9.1.5.2 “Manual-Polarizer_Test” button  

The “Manual_Polarizer_Test” button is used for manual establishment, 

configuration, and voltage readout of the Polarizer.  Pressing this button will open 

a window titled “Polarization Test”.  Figure 9.4 displays the “Polarization_Test” 

window. 

 

Figure 9.4 “Polarization_Test” window 

The “Polarization_Test” window comprises three sections that facilitate the 

selection and configuration of DAC settings for the “AD5544” the setup of the 

polarimeter, and the visualization of the readout output signals. 
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Within the “Set_DAC5544” section, two subsections are present: “DAC 

Channels,” enabling the selection of a specific channel, and “DAC Settings [0-

65535]” used to configure the Gain and Offset values for the chosen channel. 

Input values within the range of 0 to 65535 can be applied to establish these 

settings. 

The “Polarimeter Angle Setting” section serves the purpose of configuring the 

polarimeter to a defined angle. This segment encompasses an input field for 

entering the desired angle, a button labeled “Move” to direct the polarimeter to 

the specified angle, a “Home” button to reposition the polarimeter to zero degree, 

which is considered the home position. Furthermore, there is an “Identify” button 

to activate the front panel LEDs of the polarizer for identification, and a "Request 

Position" button. Upon pressing the “Request Position” button, the current 

position of the polarimeter will be displayed in a nearby textbox. 

The “Read” button performs voltage readings and displays the applied voltage 

values in the respective fields within the output signals section. 

When the "Read" button is pressed and either the “Set_DAC5544” section or the 

“Position_Angle” in the "Polarimeter Angle Setting" section is not configured, a 

window displaying a warning message will appear. This message will indicate 

the specific fields that need to be set in order to proceed with the read process. 

9.1.5.3 “Polarizer_Sweep” button 

Pressing the “Polarizer_Sweep” button triggers a sweep of polarization angles. 

During this process, intensity data is collected and subsequently plotted in 

relation to the angle sweep of polarization. Figure 9.5 displays the “Polarization 

Sweep Test” window. 
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Figure 9.5 “Polarization sweep Test” window 

Within the “selected_DAC” field the desired DAC is selected, while the Gain and 

Offset can be configured within the “DAC_setting” field with values ranging 

between 0 and 65535. 

The “Polarizer Angle Sweep Configuration [°]” field is utilized to establish the 

start, stop, and steps for the polarizer sweep in degree. To reposition the polarizer 

to the zero-degree orientation, the “Home” button is employed. 

The “Read Voltage” button is used to initiate the measurement process using the 

specified settings. In case it becomes necessary, the “Stop” button can be 

employed to cease ongoing readings, while the “Reset” button facilitates the 

complete configuration reset. 

The plot provides a representation of the readout voltages concerning the 

polarizer angle sweep. 

9.1.5.4 “Angle Calculation” button  

Pressing the “Angle Calculation” button initiates the opening of an “Angle 

Calculation” window. This window enables the sweeping of polarization angles 
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and reads out both calculated angles in continuous mode. The results of these 

calculations are then displayed. This window is depicted in Figure 9.6. 

 

Figure 9.6 “Angle Calculation” window 

This window includes the “AD5544” field, serving to choose the appropriate 

DAC and set its Gain and Offset, and the “Polarizer Angle Sweep Configuration 

[°]” field to establish the start, stop, and steps for the polarizer sweep in degree, 

the same functionality found in the “Polarization Sweep Test”.  

Moreover, a field titled “Read Angles in Normal Mode/Continuous Mode” is 

present. The “Normal Mode" button facilitates angle calculations through 

software, while opting for the “Continuous Mode” button enables the FPGA-

based angle calculation.  

The input labeled “Averaged Angle Values Number” is employed when 

calculating angle values through software by selecting the “Normal Mode” 

button. The given input value defines the number of sampling processes used for 

averaging per polarizer angle step. 

The window also features a plot, graphically depicting the readout angles across 

the polarizer angle sweep. In addition, this window offers the option to halt and 

reset the execution process. The “Stop” button interrupts ongoing readings, while 

the “Reset” button enables a full configuration reset. Additionally, a “Home” 
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button is available to reset the polarimeter to the zero-degree position, serving as 

the designated home position. 

9.1.5.5 “Light Source Test” button 

The “Light Source Test” button is used for connecting and configuring the light 

source, including the selection of filters and wavelengths. Upon pressing this 

button, the “Light Source Test” window is triggered to open. Figure 9.7 illustrates 

the “Light Source Test” window. 

 

Figure 9.7 “Light Source Test” window 

This window is divided into distinct sections. A section for light source 

configurations which is designated for configuring the light source. The “DAC 

Setting” field is similar to the functionality described in the previous section 

(9.1.5.4). Furthermore, it encompasses fields for “Port settings”, “shutter setting”, 

“Filter selection” and “Wavelength”. 
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The “Port Settings” option serves to establish a serial communication link 

between the PC and the light source. This section comprises two buttons: one for 

initiating the opening of the serial communication and the other for its closure. 

Within the “Shutter Setting” field, two buttons are presented one for opening the 

shutter and the other for closing it. 

In the “Filter Selection” section, buttons corresponding to specific filters are 

available. By selecting any of these buttons, the corresponding command is 

transmitted to the light source to configure it according to the chosen filter. 

Additionally, the “Wavelength” field permits the selection of a desired 

wavelength. The entered wavelength must fall within the range of 250nm to 

1100nm. Utilizing the “Set Wavelength” button applies the selected wavelength 

to the light source, while the “Get Wavelength” button allows checking the 

currently set wavelength in the light source. 

The “Read” button initiates readings and displays the intensity signal values 

within the “Intensity Signals” section. Furthermore, a “Stop” button is provided 

to cease ongoing readings. 

This comprehensive setup facilitates light source configuration, DAC setting, and 

the display of readout intensity signals. 

9.1.5.6 “WL_Sweep_pol_Fix’ button 

The “WL_Sweep_pol_Fix” button is employed to capture intensity signals during 

a wavelength sweep while keeping the polarizer at a specific angle. Clicking this 

button initiates the opening of the “Wavelength Sweep” window, as depicted in 

Figure 9.8.  
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Figure 9.8 “Wavelength_sweep” window 

Within this window, the configuration of Gain and Offset for the chosen DAC is 

facilitated within the “AD5544” field, following the explanations in the previous 

sections. 

In the “Polarimeter Angle Setting” field, the ability to set the polarizer at a 

specific angle is provided. This can be achieved by entering the desired angle 

value into the “Position_Angle[°]’ field and subsequently using the ‘Move 

Polarizer” button to adjust the polarizer accordingly. 

The “Home,” “Identify,” and “Request Position” buttons function as described in 

section 9.1.5.2. The “Port Settings”, “Shutter Setting” and “Filter Selection” 

fields within the “Light Source Settings” section retain the same functionality 

outlined in the “Light Source Test” window (refer to Section 9.1.5.5). 

Additionally, within this field, there is a “Wavelength [250-1100nm]” subsection, 

comprising three subfields: “Start”, “Stop”, and “Step”. These settings facilitate 

a wavelength sweep from the defined starting point to the designated stopping 

point, with specified wavelength steps. The “Reset_WL_setting” button is 

provided to reset the configuration of the wavelength settings. 
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Pressing the “Read Intensities” button triggers the presentation of intensity signal 

readouts across the wavelength sweep through a plotted graph.  

Moreover, this window provides the capability to stop and reset the execution 

process. The “Stop” button interrupts ongoing readings, while the “Reset” button 

permits a reset of the configuration. 

Notice that all configurations across all fields must be completed. Failing to do 

so and subsequently pressing the “Read Intensities” button will result in the 

appearance of a warning window, indicating the necessary configurations that 

need to be addressed. 

9.1.5.7 “WL_Sweep_pol_Sweep” button 

The “WL_Sweep_pol_Sweep” button is utilized to read out intensity signals 

while conducting both a wavelength and a polarizer angle sweep.  

Clicking this button triggers the opening of the “Wavelength_Polarizer_Sweep” 

window, as illustrated in figure 9.9. 

 

Figure 9.9 “Wavelength_Polarizer_Sweep” window 

This window offers identical functionality to the “Wavelength Sweep” window 

described in the preceding section. The sole distinction lies in the approach: rather 

than employing a fixed angle for the polarizer, the polarizer will sweep between 
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the designated start and stop positions in predefined steps as given input in the 

“Polarizer Angle Sweep configuration [°]” field. Throughout this procedure, the 

readout intensity signals will be plotted based on the polarizer's angle position. 

the “Read Intensities” button starts the process of reading and presentation of 

intensity signal readouts across the polarization angle sweep through a plotted 

graph. The “Stop” button is provided to stop ongoing readings and the “Reset” 

button enables a configuration reset. 

9.2 Developed classes for the GUI and sensor readout control 

The functionality of the GUI and control software is achieved through the 

development of classes. The subsequent sections detail these classes. 

9.2.1 The “communication_EvalBoard” class 

This class is responsible for sending data to the FPGA and for receiving the data 

sent by the FPGA. The following variables have been defined in the header file 

of this class: 

QString     USB_Port; //Port name 
QSerialPort serial;  
QString     Byte1;                  // String for synchronization 
QByteArray  DatenDAC; // QByteArray DatenDAC for transmission 
QByteArray  DatenADC;        //QByteArray DatenADC for transmission 

QByteArray  readarray; //QByteArray readarray for the received data 

bool ok2;                         //Boolean value for converting values 

bool read_cont; //Boolean value for read continuous mode 

bool stop_readcont; //Boolean value for read stop continuous mode 
   

Source Code 9.1 Definition of variables within the header file of the 

“communication_EvalBoard” class  

The constructor and destructor of this class have been inherited from a previous 

project [9]. The constructor facilitates automated port detection, interface 

configuration, and the automatic invocation of the “read_serial()” function upon 
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data reception. Within the constructor, the synchronization algorithm has been 

accommodated by appending eight 'ones' to the “Byte1” string. On the other hand, 

the destructor ensures the termination of the connection to the port. The 

subsequent lines present the source code for both the constructor and the 

destructor. 

// constructor 

communication_EvalBoard::communication_EvalBoard() 
{ 
    //automatic determination of the port 
    foreach(const QSerialPortInfo &serialPortInfo, QSerialPortInfo::availablePorts()){ 
       if((serialPortInfo.vendorIdentifier()==1027) && (serialPortInfo.productIdentifier()==24592)){ 
            USB_Port = serialPortInfo.portName(); 
            qDebug() << USB_Port << "\n"; 
            qDebug() << serialPortInfo.vendorIdentifier() << "\n"; 
            qDebug() << serialPortInfo.productIdentifier() << "\n"; 
       } 
} 

//Configuration of the interface: 

    serial.setPortName(USB_Port); 
    serial.setBaudRate(QSerialPort::Baud115200); 
    serial.setDataBits(QSerialPort::Data8); 
    serial.setParity(QSerialPort::NoParity); 
    serial.setStopBits(QSerialPort::OneStop); 
    serial.setFlowControl(QSerialPort::NoFlowControl); 
    serial.open(QIODevice::ReadWrite);//start Port 

    //readyRead-Signal embedded: 
    QObject::connect(&serial, SIGNAL(readyRead()), this, SLOT(read_serial())); 
    Byte1 ="11111111";    //QString Byte 1 mit acht Einsen füllen 
    read_cont=false; 
    stop_readcont=false; 

} 

//Destructor 

communication_EvalBoard::~communication_EvalBoard() 
{ 
    //close Port 
    serial.close(); 
} 

Source Code 9.2 Definition of the constructor and destructor of the 

“communication_EvalBoard” class  
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For sending DAC data to the FPGA the function “sendDACdata(QString address, 

QString commandandchannel, QString data)” has been defined. Upon calling this 

function, it initiates by transmitting four bytes, all set to '1', to ensure 

synchronization. Subsequently, it transmits the data received as an argument in 

the function call. Here's a breakdown of the function's usage: 

 address: This string corresponds to the command code of the 

communication protocol used to designate the desired DAC. 

 commandandchannel: This string has a length of eight characters. In the 

case of data intended for an “AD5686” type DAC, it should encompass the 

eight most significant bits (MSBs) for that DAC. However, if the data 

pertains to an “AD5544” type DAC, the first six characters must be zeroes, 

while the remaining two characters should accommodate the first two bits 

required for that DAC. 

 data: This string is four characters long and should hold the hexadecimal 

representation of the data bits meant to be written to the chosen DAC. 

This function uses a QByteArray, which is sent to the FPGA. One field of this 

array is one byte. The first four fields are filled with bytes full of ones. The fifth 

field is filled with the string “address”, the sixth with the string 

“commandandchannel” and the last two with the string “data”. Then the 

QByteArray is sent to the FPGA. The following lines show the source code of the 

described function:  

void communication_EvalBoard::sendDACdata(QString address, QString commandandchannel, QString data) { 
    //Filling the QByteArray 

    DatenDAC[0]=Byte1.toInt(&ok2,2);                     //Element 1 = Integer value of the byte with eight ones 
    DatenDAC[1]=Byte1.toInt(&ok2,2);                     //Element 2 = Integer value of the byte with eight ones 
    DatenDAC[2]=Byte1.toInt(&ok2,2);                     //Element 3 = Integer value of the byte with eight ones 
    DatenDAC[3]=Byte1.toInt(&ok2,2);                     //Element 4 = Integer value of the byte with eight ones 
    DatenDAC[4]=address.toInt(&ok2,2);                 //Element 5 = Integer value from address 
    DatenDAC[5]=commandandchannel.toInt(&ok2,2);       //Element 6 = Integer value of CommandandChannel 
    DatenDAC[6]=data.left(2).toInt(&ok2,16);           //Element 7 = Integer value of the two left characters of Data 
    DatenDAC[7]=data.right(2).toInt(&ok2,16);          //Element 8 = Integer value of the two right characters of 
Data 
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    serial.write(QByteArray::fromRawData(DatenDAC,8));  //QByteArray DataDAC Send 
} 

Source Code 9.3 Definition of the “sendDACdata(QString address, QString 

commandandchannel, QString data)” function within the “communication_EvalBoard” class 

For reading the ADCs, a more streamlined process is employed where only one 

additional byte needs to be sent in conjunction with synchronization bytes. To 

facilitate this task, a distinct function named “sendADCdata(QString address)” 

has been established. This function undertakes the transmission of 

synchronization bytes, as well as the data contained within the “address” string, 

which is provided to the function during its invocation. It's crucial that the 

“address” string corresponds to a command code within the communication 

protocol, serving to initiate the ADC readout process. 

The function incorporates a QByte array that is dispatched to the FPGA. The 

initial four fields of this array are filled with synchronization bytes, maintaining 

consistency with the synchronization approach. 

The fifth field is filled with the string “Address”. Subsequently, the QByteArray 

containing this data is dispatched to the FPGA. The subsequent lines present the 

source code for the described function: 

void communication_EvalBoard::sendADCdata(QString Adresse) { 
    //Filling the QByteArray 
    DatenADC[0]=Byte1.toInt(&ok2,2);         //Element 1 = Integer value of the byte with eight ones 
    DatenADC[1]=Byte1.toInt(&ok2,2);         //Element 2 = Integer value of the byte with eight ones 
    DatenADC[2]=Byte1.toInt(&ok2,2);         //Element 3 = Integer value of the byte with eight ones 
    DatenADC[3]=Byte1.toInt(&ok2,2);         //Element 4 = IInteger value of the byte with eight ones 
    DatenADC[4]=Adresse.toInt(&ok2,2);       //Element 5 = Integer value of the two right characters of datenhex 
    serial.write(QByteArray::fromRawData(DatenADC,5));  //QByteArray DatenADC Send 
} 

Source Code 9.4 Definition of the “sendADCdata(QString Address)” function within the 

“communication_EvalBoard” class 

For the start and stop of the continuous readout of all ADCs, functions have been 

created which use the function “sendADCdata(QString address)” function, 

employing a command code that triggers the start or stop of continuous readout 
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after synchronization. Furthermore, two variables are used to control the state of 

continuous ADC readout whether the continuous ADC readout is active or not. 

The source code for these functions is exemplified below: 

void communication_EvalBoard::startreadcont()    { 
    read_cont=true; 
    stop_readcont=false; 
    sendADCdata("10000111"); 
    qDebug() << "ADCaddress:"<<"10000111"; 
} 

void communication_EvalBoard::stopreadcont() 
{ 
    read_cont=false; 
    stop_readcont=true; 
    sendADCdata("00000111"); 
    qDebug() << "ADCaddress:"<< "00000111"; 
} 

Source Code 9.5 Definition of the “startreadcont()” and “stopreadcont()”  functions within 

the “communication_EvalBoard” class to start and stop the continuous readout of all ADCs 

respectively 

The function “read_serial()” is triggered when data is received. The data received 

is stored within the QByteArray named “readarray”. Upon complete reception of 

the data, the “connectsignal()” signal is activated. This signal has been defined 

within the header file of this class. The source code of the function “read_serial()” 

is in the following lines: 

void communication_EvalBoard::read_serial() { 

    if(stop_readcont){ 
        serial.clear(); 
        stop_readcont=false; 
    } 
    if(read_cont ){                        //read serial port in continous mode 
         readarray = serial.read(4);       //QByteArray fill readarray with the received data 
         connectsignal(); 
    } 
    else{ 
         if(!stop_readcont){ 
             readarray = serial.readAll();       //QByteArray fill readarray with the received data 
             connectsignal(); 
         } 

   } 
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} 

Source Code 9.6 Definition of the “read_serial()” function within the  

“communication_EvalBoard” class  for receiving data via USB 

The function “getdata()” retrieves and returns the QByteArray “readarray”, which 

holds the most recently received data. The source code for this function could 

resembles the following structure: 

QByteArray communication_EvalBoard::getdata() { 

    return readarray; 

} 

Source Code 9.7 Definition of the “getdata()” function within the  

“communication_EvalBoard” class  to return the received data 

9.2.2 The “MojoSerial” class 

The “MojoSerial” class serves a variety of functions within the context of the 

application. It acts as an intermediary to process user input destined for the DACs 

in the GUI. Subsequently, this processed data is made available for utilization by 

various functions of the “communication_EvalBoard” class. The primary 

objective is to facilitate the transmission of the input from the GUI to the selected 

DACs within the FPGA. 

Additionally, the “MojoSerial” class plays a pivotal role in the communication 

process with the FPGA. This encompasses both the transmission of data to the 

FPGA through the “communication_EvalBoard” class and the reception of data 

from the FPGA. This data, acquired from the FPGA via the 

“communication_EvalBoard” class, is subsequently utilized for calculations to 

determine voltage levels corresponding to specific ADCs. The outcome of these 

calculations are then displayed within the GUI. 

Furthermore, the “MojoSerial” class encompasses functionalities related to 

communication with external components like the polarizer and light source. This 
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entails configuration, measurement, and plotting of intensity signals and 

calculated angles, etc. In essence, it orchestrates the interaction with these 

external components, ensuring proper configuration, measurement, and 

visualization of the intensity signals. 

The constructor and destructor of this class is automatically generated by the Qt 

Creator as part of creating a “Qt Widgets application”. In the class's constructor, 

a connection is established between the “connectsignal()” signal, which is defined 

within the “communication_EvalBoard” class and set after data reception, and 

the “decision()” function within this class. This linkage ensures that the 

“decision()” function is always invoked after data has been received. 

Furthermore, the constructor facilitates access to functions of the 

“communication_EvalBoard” class using the identifier “communication”.  

MojoSerial::MojoSerial(QWidget *parent) : 
    QMainWindow(parent), 
    ui(new Ui::MojoSerial) 
{ 

 ui‐>setupUi(this); 

    Kommunikation = new communication_EvalBoard();     
    connect(Kommunikation, SIGNAL(connectsignal()), this, SLOT(decision())); 

    msgbox=new QMessageBox(this); 

} 

MojoSerial::~MojoSerial() 
{ 
    delete ui; 
} 

Source Code 9.8 The constructor and destructor of the “MojoSerial” class 

9.2.2.1  “decision()” function 

The “decision()” function serves as a central control point, determining the 

actions to be undertaken based on the flags and conditions present following data 

reception. The type of operations executed by the function depends on the 

interaction between various flags and fulfilled conditions. 
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The variable “readarray” is assigned the data obtained from the “getdata()” 

function of the “Kommunikation” object of the class “communication_EvalBoard 

which returns the received data by storing it in a QByteArray. The function uses 

a series of if and else-if queries to determine the appropriate course of action 

based on various flags and conditions. If the “lesen” flag is true, the function 

ad7980() is called to perform operations related to the “AD7980” field. The 

second condition checks various combinations of flags such as 

“linearity_test_flag”, “polarizer_sweep_flag”, “polarizer_settle”, 

“polarization_flag”, “lightsource_flag”, “angle_calculation”, “set_normalmode”, 

“WL_sweep_flag”, and “WL_Pol_flag”. If any of these conditions are met, the 

function “test_measurements()” is called. 

The last query checks the “flag_measure” and “angle_calculation”, 

“polarizer_settle” and “set_contmode” flags. If these conditions are met, a timer 

is used to execute the “read_angle()” function after a delay of 4000 milliseconds 

(4 seconds) using the “timer_readangle” QTimer object which utilizes the 

singleShot method. The singleShot method allows to set up a one-time timer 

event after a specified delay.  This causes the “read_angle” function to be called 

after some preparation time.  

void MojoSerial::decision(){ 
    readarray = Kommunikation‐>getdata(); 

    if (lesen){ 
        ad7980(); 
    } 
    else if (linearity_test_flag or (polarizer_sweep_flag and polarizer_settle) or polarization_flag or 
lightsource_flag  or 
             (angle_calculation and polarizer_settle and set_normalmode) or WL_sweep_flag or (WL_Pol_flag and 
polarizer_settle)) 
       { 
        test_measurements(); 
    } 

    else if (flag_measure or (angle_calculation and polarizer_settle and set_contmode)){ 
      // read_angle(); 
        timer_readangle‐>singleShot(4000,this,SLOT(read_angle())) ; 
    } 
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} 

Source Code 9.9 Definition of the “decision()” function within the “MojoSerial” class 

9.2.2.2 “ad7980()” function 

Since the FPGA sends the data of the ADCs in a fixed order, they can be assigned 

to the individual ADC using if queries in the “ad7980()” function. The sequencing 

of data transmission from the FPGA to the PC is outlined in Appendix A. For a 

more comprehensive understanding, refer to reference [9]. 

The process of assigning received data is illustrated here with an example 

involving two ADCs. The explanation focuses on the “P45P135” button. If the 

button's state is equal to one indicating it was selected, it signifies that the Read” 

button was clicked and the FPGA received instructions to read data from these 

specific ADCs and transmit the acquired data back to the PC. Hence, the data 

from these two ADCs has been successfully received. The subsequent process 

involves checking the activation state of the “P0P90” button. If it is active, the 

fifth and sixth bytes of the QByte array “readarray” correspond to the ADC “P45” 

data, and the seventh and eighth bytes relate to the ADC “P135” data. These bytes 

hold the data for "P135" since the first four bytes encompass the data for the “P0’ 

and “P90” ADCs. 

However, when the “P0P90” button is not activated, the first two bytes contain 

the data of the “P45” ADC, and the third and fourth bytes contain the data of 

“P135” ADC. This data, originally in binary form, is converted into hexadecimal 

values and are represented as strings. Following this conversion, the function 

“writeinBrowser(QString data1str, QString data3str, QString text fields)” is 

invoked, passing the generated strings along with a description that the data is 

originating from the “P45” and “P135” ADCs. The following lines show the 

source code of the function “ad7980()”: 
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void MojoSerial::ad7980() { 
    
    if (P0P90=="1") { 
        QString p0str = readarray.left(2).toHex();                       
        QString p90str = readarray.mid(2,2).toHex();                     
        writeinBrowser(p0str, p90str, "textP0P90"); 
    } 

    if (P45P135=="1") { 
        QString p45str; 
        QString p135str; 
        if (P0P90=="1") { 
          p45str = readarray.mid(4,2).toHex(); 
          p135str = readarray.mid(6,2).toHex(); 
        } else { 
          p45str = readarray.left(2).toHex(); 
          p135str = readarray.mid(2,2).toHex(); 
        } 
        writeinBrowser(p45str,p135str, "textP45P135"); 
    } 

    if (I0I2=="1") { 
        QString i0str; 
        QString i2str; 
        if (P0P90=="1" and P45P135=="1"){ 
          i0str = readarray.mid(8,2).toHex(); 
          i2str = readarray.mid(10,2).toHex(); 
        } else if (P0P90=="1" or P45P135=="1") { 
          i0str = readarray.mid(4,2).toHex(); 
          i2str = readarray.mid(6,2).toHex(); 
        } else { 
          i0str = readarray.left(2).toHex(); 
          i2str = readarray.mid(2,2).toHex(); 
        } 
        writeinBrowser(i0str, i2str, "textI0I2"); 
    } 

    if (I1I3=="1") { 
       QByteArray i1i3array; 
       i1i3array = readarray.right(4); 
       QString i1str = i1i3array.left(2).toHex(); 
       QString i3str = i1i3array.right(2).toHex(); 
       writeinBrowser(i1str, i3str, "textI1I3"); 
       } 
} 

Source Code 9.10 Definition of the “ad7980()” function within the “MojoSerial” class 

9.2.2.3 “writeinBrowser(QString daten1str, QString daten3str, QString 

textfelder)” function 

The function “writeinBrowser(QString daten1str, QString daten3str, QString 

textfelder)” serves the purpose of accepting hexadecimal data from two ADCs, 

along with information about which ADCs the data originate from. The function 
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includes converting this data into voltage values corresponding to the actual 

voltage levels at both ADC inputs. The computed voltage values are transformed 

into strings. These string representations of these voltages are then placed into the 

designated text fields in the GUI, ensuring that the voltages applied to the selected 

ADCs are displayed. 

void MojoSerial::writeinBrowser(QString daten1str, QString daten2str, QString textfelder) { 

    int daten1 = daten1str.toInt(&ok, 16); 
    float spannung1 = ((daten1 * 3.0000) / 65536.0000); 
    QString spannung1str = QString::number(spannung1, 'f', 6); 

    int daten2 = daten2str.toInt(&ok, 16); 
    float spannung2 = ((daten2 * 3.0000) / 65536.0000); 
    QString spannung2str = QString::number(spannung2, 'f', 6); 

    if(lesen){ 

        if (textfelder == "textP0P90") { 
            ui ‐> textP0 ‐> setText(spannung1str); 
            ui ‐> textP90 ‐> setText(spannung2str); 

        } else if (textfelder == "textP45P135") { 
            ui ‐> textP45 ‐> setText(spannung1str); 
            ui ‐> textP135 ‐> setText(spannung2str); 

        } else if (textfelder == "textI0I2") { 
            ui ‐> textI0 ‐> setText(spannung1str); 
            ui ‐> textI2 ‐> setText(spannung2str); 

        } else if (textfelder == "textI1I3") { 
            ui ‐> textI1 ‐> setText(spannung1str); 
            ui ‐> textI3 ‐> setText(spannung2str); 
        } 
    } 

Source Code 9.11 Definition of the “writeinBrowser()” function within the “MojoSerial” 

class 

9.2.2.4 “test_measurements()”function 

An additional function which is used within the “decision()” function in the 

“Mojoserial” class is named “test_measurements()”. This function takes the 

received data, calculates voltage values, and updates different windows or user 

interface elements based on the combination of received flags, ensuring that the 

appropriate windows are updated with the relevant information. 
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The function extracts sections of the received data array “readarray” and converts 

them to hexadecimal strings (p0str, p90str, etc.). It then converts these 

hexadecimal strings to integer values (data0, data90, etc.) using base 16 

(hexadecimal) and calculates the corresponding voltage values in a range of 0 to 

3.0000 Volts using the formula: (data * 3.0000) / 65536.0000. 

It converts the calculated voltage values back to strings with up to 6 decimal 

places (spannung_0str, spannung_90str, etc.). Depending on the combination of 

flags (“linearity_test_flag”, “polarizer_sweep_flag”, “polarizer_settle”, 

“polarization_flag, angle_calculation”, “set_normalmode”, “lightsource_flag”, 

“WL_sweep_flag”, “WL_Pol_flag”), it updates different windows or user 

interface elements with the calculated voltage values. 

If “linearity_test_flag” is true and “polarizer_sweep_flag” is false, it updates the 

“linearity_window” which corresponds to the linearity measurement. If neither 

“linearity_test_flag” nor “polarizer_sweep_flag” is true, it checks if 

“polarizer_sweep_flag” and “polarizer_settle” are true and updates the 

“polarizer_test_window” which corresponds to the polarization measurement. If 

the “polarization_flag” is true, it updates the “polarization_window”. If neither 

the “linearity_test_flag” nor the “polarizer_sweep_flag” are true, and the 

“angle_calculation”, the “polarizer_settle”, and the “set_normalmode” are true, it 

calculates angles and updates the “angle_calculation_window”. If the 

“lightsource_flag” is true, it updates the “lightsource_window”. If the 

“WL_sweep_flag” is true, it updates the “WL_sweep_window”. If both the 

“WL_Pol_flag” and the “polarizer_settle” are true, it updates the 

“WL_Polarizer_window”. After all the updates are done, it sets the 

“polarizer_settle” flag to false. This flag is employed within the processes that 

involve polarizer sweeping. The source code of this function is as follows: 
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void MojoSerial::test_measurements() 
{   
    QString p0str = readarray.left(2).toHex();                      //p0str mit dem Hexadezimalwert der zwei linken 
Zeichen von readarray füllen 
    QString p90str = readarray.mid(2,2).toHex();                    //p90str mit dem Hexadezimalwert der zwei rechten 
Zeichen von readarray füllen 
    QString p45str = readarray.mid(4,2).toHex(); 
    QString p135str = readarray.mid(6,2).toHex(); 
    QString i0str= readarray.mid(8,2).toHex(); 
    QString i2str=readarray.mid(10,2).toHex(); 
    QByteArray i1i3array; 
    i1i3array = readarray.right(4); 
    QString i1str = i1i3array.left(2).toHex(); 
    QString i3str = i1i3array.right(2).toHex(); 

   // qDebug() << "p0str:"<<p0str; 
   // qDebug() << "p90str:"<<p90str; 

    int data0 = p0str .toInt(&ok,16); 
    float spannung_0 = ((data0 * 3.0000) / 65536.0000); 
    int data90 = p90str .toInt(&ok,16); 
    float spannung_90 = ((data90 * 3.0000) / 65536.0000); 
    int data135 = p135str .toInt(&ok,16); 
    float spannung_135 = ((data135 * 3.0000) / 65536.0000); 
    int data45 = p45str .toInt(&ok,16); 
    float spannung_45 = ((data45 * 3.0000) / 65536.0000); 
    int datai0 = i0str .toInt(&ok,16); 
    float spannung_i0 = ((datai0 * 3.0000) / 65536.0000); 
    int datai1 = i1str .toInt(&ok,16); 
    float spannung_i1 = ((datai1 * 3.0000) / 65536.0000); 
    int datai2 = i2str .toInt(&ok,16); 
    float spannung_i2 = ((datai2 * 3.0000) / 65536.0000); 
    int datai3 = i3str .toInt(&ok,16); 
    float spannung_i3 = ((datai3 * 3.0000) / 65536.0000); 

    QString spannung_0str = QString::number(spannung_0, 'f', 6); 
    QString spannung_90str = QString::number(spannung_90, 'f', 6); 
    QString spannung_45str = QString::number(spannung_45, 'f', 6); 
    QString spannung_135str = QString::number(spannung_135, 'f', 6); 
    QString spannung_i0str = QString::number(spannung_i0, 'f', 6); 
    QString spannung_i1str = QString::number(spannung_i1, 'f', 6); 
    QString spannung_i2str = QString::number(spannung_i2, 'f', 6); 
    QString spannung_i3str = QString::number(spannung_i3, 'f', 6); 

    if(linearity_test_flag and  !polarizer_sweep_flag) 
        linearity_window ‐>update_values(spannung_0 , 
spannung_90,spannung_45,spannung_135,spannung_i0,spannung_i1,spannung_i2,spannung_i3); 
    else if(!linearity_test_flag and  (polarizer_sweep_flag and polarizer_settle) ) 
        polarizer_test_window‐> update_values(spannung_0 , 
spannung_90,spannung_45,spannung_135,spannung_i0,spannung_i1,spannung_i2,spannung_i3); 
    else if(polarization_flag) 
            polarization_window ‐>update_values(spannung_0str , 
spannung_90str,spannung_45str,spannung_135str,spannung_i0str,spannung_i1str,spannung_i2str,spannung_i3
str); 
    else if(!linearity_test_flag and  !(polarizer_sweep_flag and polarizer_settle) and ( angle_calculation and 
polarizer_settle and set_normalmode)) 
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            angle_calculation_window‐> calculate_angles(spannung_0 , 
spannung_90,spannung_45,spannung_135); 
    else if(lightsource_flag ){ 
            lightsource_window  ‐>  update_values(spannung_0str , 
spannung_90str,spannung_45str,spannung_135str,spannung_i0str,spannung_i1str,spannung_i2str,spannung_i3
str); 

    } 
    else if(WL_sweep_flag){ 
        WL_sweep_window ‐> update_values(spannung_0 , 
spannung_90,spannung_45,spannung_135,spannung_i0,spannung_i1,spannung_i2,spannung_i3); 
    } 

    else if(WL_Pol_flag and polarizer_settle){ 
        WL_Polarizer_window ‐> update_values(spannung_0 , 
spannung_90,spannung_45,spannung_135,spannung_i0,spannung_i1,spannung_i2,spannung_i3); 
     } 

    polarizer_settle=false; 

} 

Source Code 9.12 Definition of the “test_measurements()” function in the “MojoSerial” class 

to update different windows or user interface elements 

9.2.2.5 “read_angle()” function 

This function is employed within the “decision()” function in the “Mojoserial” 

class. It is responsible for processing angle measurement data obtained from the 

FPGA. Initially, it extracts the first 2 bytes (4 characters) of the “readarray” as a 

first angle measurement data (angle90_0 value) and the next 2 bytes (4 

characters) of the readarray starting from the 3rd byte as a second angle 

measurement data (angle135_45) value and converts them to a hexadecimal 

string and assigns it to the “angle90_0str” and “angle135_45str” variables. Then 

these hexadecimal strings are converted to integer values. The if-else queries are 

used to differentiate the behavior of the function based on the mode of operation, 

ensuring that the angle measurement data is processed appropriately for each 

mode. 

If the “flag_measure” is true, the obtained values correspond to the 

“angle_measurment” form and by using the “angle_measurment” object, the 

“calculate_measurement” function is called with angle90_0 and angle135_45 
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values. Additionally, the “angle90_0str” value is written to a file named 

“angle90_0.txt” and the “angle135_45str” value is written to a file named 

“angle135_45.txt” for recording purposes. 

The else-if query checks if the flags “angle_calculation”, “polarizer_settle”, and 

“set_contmode” are all true. If these conditions are met, it indicates that the data 

is related to “Angle_Calculation” form in continuous mode. Then the calculated 

integer values of “angle90_0” and “angle135_45” are converted to degree values. 

These converted angle values are then sent to the “Angle_Calculation” form by 

calling the “realtimeplot()” function. This function is responsible for updating a 

real-time plot and displaying angle values on the GUI. If the “polarizer_settle” 

flag is set to false, it indicates the end of a specific phase of settling. 

void MojoSerial::read_angle() { 
    angle90_0str = readarray.left(2).toHex(); 
    angle135_45str = readarray.mid(2,2).toHex(); 
     
    int angle90_0=angle90_0str .toInt(&ok,16); 
    int  angle135_45=angle135_45str .toInt(&ok,16); 

    if(flag_measure) { 
        angle_measurment ‐>calculate_measurement(angle90_0 , angle135_45); 

        QFile file3("/user/lalaee/Desktop/measurements/angle90_0.txt"); 
        if(file3.open((QIODevice::WriteOnly)| QIODevice::Append |QIODevice::Text)) 
        { 
            QTextStream stream(&file3); 
            stream <<angle90_0str <<Qt::endl; 
            file3.close(); 
        } 
    } 
    else if(angle_calculation and polarizer_settle and set_contmode){ 
        float angle90=((float(angle90_0))/16384.0) *(180.0/3.14); //convert radian value of angle90 to degree 
        float angle135= ((float(angle135_45))/16384.0)*(180.0/3.14);//convert radian value of angle135 to        
degree 

        qDebug() << "angle90_0:" << angle90; 
        qDebug() << "angle135_45:" << angle135; 
        angle_calculation_window‐> realtimeplot(angle90, angle135); 
    } 
    polarizer_settle=false; 

} 

Source Code 9.13 Definition of the “read_angle()” function within the “MojoSerial” class 

designed to process angle measurement data acquired from the FPGA 
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9.2.2.6 Functions for the “AD5686” field of the GUI 

In the form file of the main window, the action “clicked()” was linked to the 

“Send” button. This function defines the behavior when the button is clicked. 

Initially, the following variables are defined: 

    QString commandstr;          //String for the entered command bits 
    QString D, C, B, A;                  //Strings for channels D, C, B, A 
    QString DCBA;                           //Strings to summarize D, C, B, A 
    QString spannungsstr;                 //String for the entered voltage 
    QByteArray Daten;                      //QByteArray Daten for transmission 
    QString Adresse="00000101"; //QString Address for transmission 

Source Code 9.14 Definition of variables in the “on_pushButton_clicked()” function of DAC 

“AD5686” field within the “MojoSerial” class  

Subsequently, the content of the text field labeled “lineEdit_3,” intended for 

inputting the four command bits for the “AD5686” DAC type, is extracted and 

assigned to the string variable “commandstr”. To accommodate later operations 

requiring a decimal representation, the binary command bits entered in 

“commandstr” are converted into an integer value known as “commandbits”. The 

source code for this resembles the following structure: 

   commandstr = ui‐>lineEdit_3‐>text(); 
    int commandbits=commandstr.toInt(&ok,2); 
 

Source Code 9.15 Save the input of the command bits and convert to an integer value in the 

“on_pushButton_clicked()” function of DAC “AD5686” 

The buttons for the DAC channels are each queried with an if condition. If a 

button is activated, a string with the same name as the selected DAC channel is 

filled with “1”, otherwise with “0”. After the if-queries all strings are combined 

to a string “DCBA”. This string is then appended to the string with the command 

bits and passed to the string “commchanstring”. Thus, the first eight MSBs for 

the input shift register (see chapter 3.1.3 in [9]) are in one string. The source text 

for this is in the following lines: 
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    if (ui‐>radioButton‐>isChecked()) {      //if radioButton is true, 
        D="1";                               //Fill string D with "1", 
    } else {                                  //otherwise 
        D="0";                             //with "0" 
    } 
    if (ui‐>radioButton_2‐>isChecked()) {    //if radioButton_2 is true, 
        C="1";                               //Fill string C with "1 
    } else {                                 //otherwise 
        C="0";                             //with "0" 
    } 
    if (ui‐>radioButton_3‐>isChecked()) {    //if radioButton_3 is true, 
        B="1";                               //Fill String B with "1" , 
    } else {                                 //otherwise 
        B="0";                             //with "0" 
    } 
    if (ui‐>radioButton_4‐>isChecked()) {    //wenn radioButton_4 true ist, 
        A="1";                               //Fill String A with "1"S, 
    } else {                                 //otherwise 
        A="0";                             //with "0" 
    } 

    //Combining the command bits and the selected DAC channels to a string (binary) 
    DCBA=D+C+B+A; 
    QString commchanstring=commandstr+DCBA; 

Source Code 9.16 Form a string based on the selected channels in the 

“on_pushButton_clicked()” function of the DAC “AD5686” field 

The maximum possible output voltage at a reference voltage of 3 V according 

to the calculation with the transfer function is: 

𝑉 3𝑉 ∗
65535
65536

2,99995 𝑉                       
9.1  

The smallest possible adjustable output voltage after 0 V is: 

𝑉 3𝑉 ∗
1

65536
0,00005 𝑉                       

9.2  

Due to the 16-bit resolution, there is therefore a voltage difference of at least 

0.00005 V between two differently set output voltages. For this reason, users 

should be able to enter mV values into the application. The maximum adjustable 

output voltage is therefore 2999 mV. For the later transmission of the 16 data bits 

the decimal equivalent of this input must be determined with the transfer function 

[9]. For this purpose, the formula must be converted to “D” which results in:  
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𝐷
𝑉
𝑉

∗ 2                          
7.3  

Once the content of the voltage text field has been captured in the string 

“spannungsstr”, it undergoes conversion into an integer value, which is 

subsequently assigned to the variable “spannungseingabe”. Utilizing this 

transformed value, the 16 data bits decimal equivalent is computed using a 

specific formula, and this result is stored in the integer variable “Di”. Following 

this, the value of “Di” is transformed into a hexadecimal representation, then 

further into a string that finds its place in the variable “Distr”. 

An “if” query is employed to inspect whether the string “Distr” comprises four 

characters. If it falls short, the requisite number of zeros is affixed to the 

beginning of the string, ensuring it attains a length of precisely four characters. 

This step bears significance as the hexadecimal string must encapsulate the full 

16 data bits and adhere to a length of four characters. It's pertinent to recognize 

that a four-character hexadecimal number corresponds to a 16-character binary 

counterpart. 

    spannungsstr = ui‐>lineEdit_4‐>text(); 

    int spannungseingabe = spannungsstr.toInt(&ok, 10); 
    int Di=((spannungseingabe*65536)/3000); 
    //Conversion of the decimal transfer value into a hexadecimal value and a string to be able to fill the 
QByteArray data 
    QString Distr = QString::number(Di,16); 
    //if Distr is smaller than four characters, it is added with so many zeros that Distr contains exactly four 
characters 
    if (Distr.size()<2) { 
        Distr= "000" + Distr; 
    }  else if (Distr.size()<3) { 
        Distr= "00" + Distr; 
    }  else if (Distr.size()<4) { 
        Distr= "0" + Distr; 
    } 

Source Code 9.17 Converting captured voltage input to a 16-bit hexadecimal string, 

transforming into the complete 16 data bits with proper zero-padding in the 

“on_pushButton_clicked()” function of the DAC “AD5686” field 
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The initial definition of the string “address” involves the command code utilized 

for selecting the DAC of “AD5686” type. Within the string “commchanstring” 

the eight most significant bits (MSBs) are stored in binary form. In parallel, the 

string “Distr” captures the 16 data bits in hexadecimal format, intended for the 

shift register of the “AD5686” DAC. 

When necessary, these strings are furnished to the function 

“sendDACdata(QString address, QString commandandchannel, QStringdata)”, 

facilitating the transmission of data to the FPGA. However, this transmission 

should only occur if the provided input is accurate. Any discrepancies should 

prompt the display of an “Error Message” dialog. 

An “if” query is employed to verify input errors. The string “DCBA” should not 

consist solely of zeros, as this would indicate the absence of a selected channel. 

The size of the “commandstr” string must be at least four, as there are four 

command bits in total. If non-binary characters are input as command bits, their 

integer equivalent is zero. The integer equivalent can only be zero if four zeros 

have been specifically entered. Similarly, if non-numeric characters are used for 

the voltage input, the integer equivalent of the voltage input becomes zero. 

Furthermore, the voltage input is only considered zero if at least one zero has 

been entered, and no other characters are present. Additionally, the integer 

equivalent must not exceed 2999, as this is the maximum output voltage 

permissible. 

If any of these conditions are not met, an error message dialog will appear, 

deactivating the main window. Until this dialog is closed, no further changes can 

be made to the main window inputs. Upon correcting entries, the function 

“sendDACdata(QString address, QString commandandchannel, QString data)” is 

executed, transmitting the data to the FPGA. If the data transmission is successful, 
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the voltage input field is automatically cleared. The source code for this is as 

following: 

    if (DCBA == "0000" or commandstr.size()<4 or (commandbits==0 and commandstr !="0000") or 
spannungseingabe>2999 
    or((spannungsstr!="0" and spannungsstr!="00" and spannungsstr!="000" and spannungsstr!="0000") and 
spannungseingabe==0)) { 
        FensterZwei fensterzwei; 
        fensterzwei.setModal(true); 
        fensterzwei.exec(); 
    } else { 
    Kommunikation‐>sendDACdata(Adresse, commchanstring, Distr); 
    ui‐>lineEdit_4‐>clear(); 
    } 
} 

Source Code 9.18 Validation of input conditions in the “on_pushButton_clicked()” function 

of the DAC “AD5686” field 

9.2.2.7 Functions for the “Mode selection” field of the GUI 

Upon clicking the “Mode_set” button in the GUI, the “on_Mode_set_clicked()” 

function is invoked. This function is responsible for configuring modes for ADCs 

based on user interaction with continuous mode or normal mode in the GUI.  

Initially, some boolean variables are defined to initialize with false values. These 

variables are employed for control purposes, ensuring they do not disrupt various 

execution processes that can occur in either normal mode or continuous mode 

within the program. Subsequently, it determines the selected mode between 

“normal mode” and “continuous mode” based on the states of the radio buttons 

in the GUI. Depending on the selected mode, appropriate flags (“normalmode” 

or “contmode”) are set to control the program's subsequent execution logic. If no 

mode is selected, a warning message is displayed to prompt the user to make a 

choice. The source code for this function has the following structure: 

void MojoSerial::on_Mode_set_clicked()   //define the mode of ADCs(continious mode or normal mode) 
{ 
    lesen=false; 
    linearity_test_flag=false; 
    flag_measure=false; 
    polarization_flag=false; 
    angle_calculation=false; 
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    if (ui‐>normalmode‐>isChecked()) { 
        normalmode=true; 
        contmode=false; 
    } 
    else if(ui‐>continuousmode‐>isChecked()) { 
        normalmode=false; 
        contmode=true; 
    } 
    else 
    { 
        msgbox‐>warning(this,"warning","please select one mode."); 
    } 
} 

Source Code 9.19 Define the mode of ADCs in the “on_Mode_set_clicked()” function within 

the “MojoSerial” class 

Clicking the “reset” button in the GUI, the “on_reset_clicked()” function is 

invoked. This function is designed to call the AD5544 function multiple times 

with different parameters and to configure the DAC settings to their initial values 

at zero, to clear text fields, and to reset the program mode and other flags to their 

initial values. 

void MojoSerial::on_reset_clicked() 
{ 
    AD5544(0, "00000000", "00000000"); 
    AD5544(0, "00000000", "00000001"); 
    AD5544(0, "00000000", "00000010"); 
    AD5544(0, "00000000", "00000011"); 

    ui ‐> textP0  ‐> clear(); 
    ui ‐> textP90 ‐> clear(); 
    ui ‐> textP45 ‐> clear(); 
    ui ‐> textP135‐> clear(); 
    ui ‐> textI0  ‐> clear(); 
    ui ‐> textI2  ‐> clear(); 
    ui ‐> textI1  ‐> clear(); 
    ui ‐> textI3  ‐> clear(); 

    linearity_test_flag=false; 
    flag_measure=false; 
    lesen=false; 
    normalmode=false; 
    contmode=false; 
    angle_calculation=false; 
    lightsource_flag=false; 
    polarization_flag=false; 
    polarizer_sweep_flag =false; 

} 
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Source Code 9.20 Configure of the DAC settings to initial values at zero in the 

“on_reset_clicked()” function within the “MojoSerial” class 

Furthermore, to readout and display the voltages in continuous mode there is a 

“Angle_measurement” button which by clicking invokes the function 

“on_Angle_meaurment_clicked()”. This function manages the setup and 

interaction with the angle measurement functionality in the program. It ensures 

that the proper conditions are met for continuous mode operation before 

connecting signals and displaying the measurement interface. 

Since this button opens the new form, an initial is checked if the 

“angle_measurment” object exists. If it does not exist, it is created using the new 

operator and associated with the “Angle_measurment” class. This step ensures 

that there is a valid instance of the angle measurement object. 

    if (!angle_measurment) 
        angle_measurment = new Angle_measurment(this); 

Source Code 9.21 Instantiate an object of the “Angle_measurment” class in the 

“on_Angle_meaurment_clicked()” function 

then, the flags lesen and “linearity_test_flag” are set to false and the flag 

“flag_measure” is set to true. 

   lesen=false; 
    linearity_test_flag=false; 
    flag_measure=true; 

Source Code 9.22 Set flags for measurement control in the “on_Angle_meaurment_clicked()” 

function 

If the “contmode” flag is true indicating continuous mode is selected, the code 

establishes several connections using the “connect()” function. These connections 

are set up to link signals from the “angle_measurment” object to slots in the 

MojoSerial class. 



181 
 

The connections are related to starting and stopping data transmission 

(“send_startcontdata()” and “send_stopcontdata()” signals), as well as resetting 

the angle form interface (“reset_angleform()“ signal). 

The “get_startcontdata()”, “get_stopcontdata()”, and “angleform_exit()” slots in 

the MojoSerial class are connected to these signals. The “angle_measurment” 

interface is displayed using the “show()” method. If contmode is false, a warning 

message is displayed using the “msgbox->warning()” function. The warning 

message prompts the user to choose an appropriate mode (“continuous mode”) 

and to click the “Mode_set” button before proceeding. The code for this process 

is as follows: 

void MojoSerial::on_Angle_meaurment_clicked() 
{ 
    if (!angle_measurment) 
        angle_measurment = new Angle_measurment(this); 

    lesen=false; 
    linearity_test_flag=false; 
    flag_measure=true; 

    if(contmode ){ 
        connect(angle_measurment,SIGNAL(send_startcontdata()),this,SLOT(get_startcontdata())); 
        connect(angle_measurment,SIGNAL(send_stopcontdata()),this,SLOT(get_stopcontdata())); 
        connect(angle_measurment,SIGNAL(reset_angleform()),this,SLOT(angleform_exit())); 
        angle_measurment ‐>show(); 
     } 
     else { 
        msgbox‐>warning(this,"warning","please select continuous Mode and click Mode_set button."); 
     } 
} 

Source Code 9.23 Definition of the “on_Angle_meaurment_clicked()” function within the 

“MojoSerial” class 

The “get_startcontdata()” function is defined within the “MojoSerial” class. This 

function is related to starting the continuous data acquisition process. 

It sets the flag_measure flag to true. This flag controls the measurement process 

and invokes the “startreadcont()” function on the “Kommunikation” object 
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(“Kommunikation” is an instance of the “communication_EvalBoard()” class) for 

initializing the continuous data reading operation. 

void MojoSerial::get_startcontdata(){ 
    flag_measure=true; 
    Kommunikation‐>startreadcont(); 
 } 

Source Code 9.24 Definition of the “get_startcontdata()” function within the “MojoSerial” 

class 

The “get_stopcontdata()” function is involved in stopping the ongoing continuous 

data acquisition process. It updates the “flag_measure” flag to the false value and 

invokes “stopreadcont()” function  that manages the cessation of continuous data 

reading.  

void MojoSerial::get_stopcontdata(){ 
    flag_measure=false; 
    Kommunikation‐>stopreadcont(); 
 } 

Source Code 9.25 Definition of the “get_stopcontdata()” function within the “MojoSerial” 

class 

The “angleform_exit()” function is responsible for stopping the ongoing 

continuous data acquisition process. It invokes the “stopreadcont()” function, 

which is designed to manage the termination of continuous data reading when the 

“Angle_meaurment” window is closed. 

void MojoSerial::angleform_exit(){ 

         Kommunikation‐>stopreadcont(); 

 } 

Source Code 9.26 Definition of the “angleform_exit()” function within the “MojoSerial” 

class 
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9.2.2.8 Functions for the “AD7980” field of the GUI 

Clicking the “Lesen” button within the “AD7980” field triggers the execution of 

the function “on_Buttonlesen_clicked()”. In this function, a sequence of actions 

is considered. Initially, several boolean variables are initialized to ensure that the 

reading voltages are related to voltage reading operations in the “AD7980” field. 

Before proceeding with further actions, the function checks if the flags for 

“Angle_measurement” and “Linearity_Test” are set to false, the “lesen” flag is 

set to true. This action indicates that the data transmitted from the FPGA must be 

forwarded to the “AD7980” field. 

This arrangement ensures that the reading of voltages is linked to the “AD7980” 

field in the main GUI. The careful initialization of variables and the conditional 

checks helps to establish a controlled and accurate process for the voltage 

measurement operations. 

If “normalmode” is set, a check is performed to determine which ADCs have 

been chosen. If a button is activated, a string with the same name as the selected 

ADC in the “AD7980” field is populated with “1”; otherwise, it is filled with “0”. 

These strings, corresponding to the status of the buttons, are combined into a 

sequence. To this sequence, the string “0110” is appended, resulting in the 

creation of the “ADCAdresse” string. 

When two or more ADCs are chosen, this “ADCAdresse” string takes on the role 

of the command code in the communication protocol. This ensures the selection 

of the appropriate ADCs for data retrieval, with the acquired data subsequently 

sent to the PC. Consequently, if two or more ADCs are selected, the function 

“sendADCdata(ADCAdresse)” is invoked. The “ADCAdresse” string is then 

passed to this function to facilitate the transmission of data to the FPGA. 
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In cases where no button is activated, an error message dialog emerges, 

deactivating the primary window. This window remains inactive until the error 

message dialog is closed. 

The subsequent lines showcase the structure of the “on_ Buttonlesen _clicked()” 

function:  

void MojoSerial::on_Buttonlesen_clicked() 
{ 
    QString ADCAdresse;        //String for the address of the ADCs 
    QByteArray Daten; 

    polarizer_sweep_flag =false; 
    angle_calculation=false; 
    polarization_flag=false; 

    if(!(flag_measure or linearity_test_flag)){ 
        lesen=true; 
        if (normalmode){ 
            //checking whether the respective buttons for the channels are true or false and filling the associated 
strings 
            if (ui‐>ButtonP0P90‐>isChecked()) {      //if ButtonP0P90 is true, 
                P0P90="1";                           //Fill string P0P90 with "1", 
            } else {                                 //otherwise 
                P0P90="0";                           //with "0" 
                ui ‐> textP0 ‐> clear(); 
                ui ‐> textP90 ‐> clear(); 
            } 

            if (ui‐>ButtonP45P135‐>isChecked()) {    //if ButtonP45P135 is true, 
                P45P135="1";                         //Fill string P45P135 with "1", 
            } else {                                 //otherwise 
                P45P135="0";                         //with "0" 
                ui ‐> textP45 ‐>  clear(); 
                ui ‐> textP135 ‐>  clear(); 

            } 
            if (ui‐>ButtonI0I2‐>isChecked()) {    //wenn ButtonI0I2 true ist, 
                I0I2="1";                             //Fill String I0I2 with "1" , 
            } else {                                 //otherwise 
                I0I2="0";                               //with "0" 
                ui ‐> textI0 ‐> clear(); 
                ui ‐> textI2 ‐> clear(); 
            } 
            if (ui‐>ButtonI1I3‐>isChecked()) {    //wenn ButtonI1I3 true ist, 
                I1I3="1";                               //Fill String I1I3 with "1" , 
            } else {                                 //otherwise 
                I1I3="0";                             //with "0" 
                ui ‐> textI1 ‐> clear(); 
                ui ‐> textI3 ‐> clear(); 
              } 
            ADCAdresse= P0P90 + P45P135 + I0I2 + I1I3 +"0110"; 
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           // qDebug() << ADCAdresse; 
           if (ADCAdresse=="00000110") {  //if no.......ErrorMESSAGE, otherwise send data 
             FensterZwei fensterzwei; 
             fensterzwei.setModal(true); 
             fensterzwei.exec(); 
           } else { 
               //qDebug() << ADCAdresse; 
               Kommunikation‐>sendADCdata(ADCAdresse); 
           } 
        } 
        else{ 
            msgbox‐>warning(this,"warning","please select normal Mode and click Mode_set button."); 
        } 
  } 
} 

Source Code 9.27 Definition of the “on_Buttonlesen_clicked()” function within the 

“MojoSerial” class 

9.2.2.9 Functions for the “AD5544” field of the GUI 

For every channel of the “AD5544” DAC type, there exists both a slider and a 

progress bar. To ensure synchronization between the slider and its corresponding 

progress bar, the “valueChanged(int)” action has been incorporated into each 

slider within the main window's form. Within each of these action functions, the 

programming dictates that the linked progress bar should reflect the exact value 

of the slider. An example of such a function's source code is depicted below: 

void MojoSerial::on_SliderU6A_valueChanged(int value) 
{ 
    ui‐>BarU6A‐>setValue(value); 
} 

Source Code 9.28 Definition of the “on_SliderU6A_valueChanged(int value)” function 

within the “MojoSerial” class to update the value of “BarU6A” to match the changed value of 

“SliderU6A” in response to the user's interaction 

Upon dragging a slider with the mouse and subsequently releasing it, the chosen 

channel of the designated DAC is configured to match the percentage indicated 

by the associated progress bar. To facilitate this, the “sliderReleased()” action has 

been appended to each slider in the main window's form. Within each of these 

action functions, the “AD5544(int progress, QString address, QString channel)” 
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function is invoked. This function receives the value from the respective progress 

bar, the command code corresponding to the selected DAC in the communication 

protocol, and a byte where the two least significant bits (LSBs) correspond to the 

selected channel. The subsequent lines present an illustrative example of the 

“sliderReleased()” function and the invocation of the aforementioned function: 

void MojoSerial::on_SliderU6A_sliderReleased() 
{ 
    AD5544(ui‐>BarU6A‐>value(), "00000000", "00000000"); 
} 

Source Code 9.29 Definition of the “on_SliderU6A_sliderReleased()” function within the 

“MojoSerial” class 

The function “AD5544(int progress, QString address, QString channel)” is 

responsible for computing a hexadecimal representation based on the input 

received from a progress bar. In the case of “AD5544” type DACs, a total of 16 

data bits are utilized. When all 16 bits are set to one, the corresponding decimal 

value is 65535. Considering that a progress bar operates with integer values 

ranging from zero to 100, a conversion process is required. 

To achieve this conversion, the value obtained from the progress bar is divided 

by 100 and then multiplied by 65535, reflecting the scale of the DAC's available 

range. This ensures that the progress bar's integer values are appropriately 

mapped onto the 16-bit range of the “AD5544” DACs. 

The purpose is to determine the decimal equivalent that aligns with the 16 data 

bits, configuring the desired value for the chosen DAC. This decimal value is then 

converted into a hexadecimal representation. If the resulting hexadecimal value 

spans fewer than four characters, it is filled with zeros to ensure a total length of 

four characters, thus covering all 16 data bits. Subsequently, the function 

“sendDACdata(QString address, QString commandandchannel, QString data)” is 

invoked with the appropriate parameters to transmit this data to the FPGA. The 

following lines show the source code for this: 
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void MojoSerial::AD5544(int progress, QString Adresse, QString Kanal) { 
    int datenint = (progress * 65535)/100; 
   QString datenhex = QString::number(datenint,16); 
    if (datenhex.size()<2) { 
        datenhex= "000" + datenhex; 
    }  else if (datenhex.size()<3) { 
        datenhex= "00" + datenhex; 
    }  else if (datenhex.size()<4) { 
        datenhex= "0" + datenhex; 
    } 
    Kommunikation‐>sendDACdata(Adresse, Kanal, datenhex); 

} 

Source Code 9.30 Definition of the “AD5544(int progress, QString Adresse, QString Kanal)” 

function within the “MojoSerial” class 

9.2.2.10  Functions for the “Measurement and Test” field of the GUI 

For each button within the “Measurement and Test" field, there is a corresponding 

function that gets triggered when the button is clicked. The functions associated 

with these buttons are described as follows. 

9.2.2.10.1 “on_linearity_test_clicked()” function 

This function prepares the linearity test interface for use by creating a form, 

setting flags and variables, showing the form to the user, and establishing 

connections to manage interactions with the linearity test interface. 

Firstly, it is verified whether the “linearity_window” object has been instantiated. 

If it has not been created, a new instance of the “linearity_test” form is created.  

The “lesen” flag is set to false, to prevent data reading during the linearity test. 

The flags “flag_measure”, “polarization_flag” and “polarizer_sweep_flag” are 

set to false to ensure that the measurement, polarization and polarizer sweep 

processes are inactive, respectively. The “linearity_test_flag” is set to true to 

indicate that the linearity test interface is active. 

The “linearity_window” form is shown to the user and the connections between 

signals and slots are established. 
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The “DAC_settings_linearity” signal is emitted by the “linearity_window” with 

the parameters (int, QString, QString) and is connected to the “AD5544(int , 

QString , QString)” function in the  “Mojoserial” class to allows for 

communication between these components and to configure the DAC settings. 

The “reset_linearity_flag” signal from the “linearity_window” is connected to the 

“on_reset_clicked()” function. This connection is used to reset flags and settings 

related to the last configuration of DAC channels in the “linearity_window”. 

The “ADC_settings” signal emitted by the “linearity_window” is connected to 

the “ADC_setting()” function. This connection is used to configure ADC settings. 

     void MojoSerial::on_linearity_test_clicked() 
{ 
    if (!linearity_window) 
         linearity_window = new linearity_test(this); 

     lesen=false; 
     flag_measure=false; 
     polarization_flag=false; 
     polarizer_sweep_flag=false; 
     linearity_test_flag=true; 
     linearity_window ‐>show(); 
     connect(linearity_window,SIGNAL(DAC_settings_linearity(int,QString,QString)),this,SLOT(AD5544(int , 
QString , QString ))); 
     connect(linearity_window,SIGNAL(reset_linearity_flag()),this,SLOT(on_reset_clicked())); 
     connect(linearity_window,SIGNAL(ADC_settings()),this,SLOT(ADC_setting())); 
} 

Source Code 9.31 Definition of the “on_linearity_test_clicked()” function within the 

“MojoSerial” class 

The purpose of the “ADC_setting()” function is to configure the program for 

reading the voltage values from all ADCs in normal mode. For this purpose, a 

QString variable named “ADCAddress” is assigned the value “11110110”. Then, 

the “sendADCdata()” function of the “Kommunikation” object is invoked with 

“ADCAddress” as an argument to send data to the FPGA related to the specified 

ADC address. 

void MojoSerial::ADC_setting() { 
    QString ADCAddress="11110110"; 
    Kommunikation‐>sendADCdata(ADCAddress); 
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} 

Source Code 9.32 Definition of the “ADC_setting()” function within the “MojoSerial” class 

9.2.2.10.2 “on_polarization_measurement_clicked()” function 

This function serves the purpose to enable the DAC selection to control the Gain 

and and Offset of the selected channel, as well as to simplify the interaction with 

the polarizer and to set a specific polarization angle. Additionally, it handles the 

retrieval of output signals from all ADC channels. The function begins by 

verifying the existence of a “polarization_window”. If this window is not yet 

instantiated, a new instance of the “polarization_measurement” class is created 

and linked to the “polarization_window” pointer. This link establishes a 

connection between the main window and the newly created instance. By setting 

the “polarization_flag” to true and concurrently setting other flags to false, the 

functionality for signal reading within this function becomes operational. Next 

the GUI window associated with the “polarization_window” instance is made 

visible to the user showing interface elements for controlling and monitoring 

polarization-related measurements. 

The connect lines establish connections between signals emitted by the 

“polarization_window” instance and corresponding slots (functions) in the 

“MojoSerial” class. These connections allow communication between the GUI 

components and the underlying logic of the program. When certain actions occur 

in the GUI such as changing DAC or ADC settings, the corresponding slots will 

be executed. 

The first connect statement connects the signal named “DAC_settings” with three 

parameters (an integer and two QStrings) from the “polarization_window” to the 

slot named “AD5544” in the “MojoSerial” class to set the selected DAC with the 

specified settings. 

The second connect statement establishes a connection between a signal named 

“ADC_settings” emitted by the “polarization_window” and a slot named 
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“ADC_setting” within the "MojoSerial" class. This connection is made to specify 

the specific readout signals of the ADCs that need to be read and processed. The 

source code of this function is as follows. 

    if (!polarization_window) 
         polarization_window = new polarization_measurement(this); 

     lesen=false; 
     linearity_test_flag=false; 
     flag_measure=false; 
     polarizer_sweep_flag =false; 
     angle_calculation=false; 
     polarization_flag=true; 
     polarization_window ‐>show(); 
     connect(polarization_window,SIGNAL(DAC_settings(int,QString,QString)),this,SLOT(AD5544(int , QString , 
QString ))); 
     connect(polarization_window,SIGNAL(ADC_settings()),this,SLOT(ADC_setting( ))); 

} 

Source Code 9.33 Definition of the “on_polarization_measurement_clicked()” function 

within the “MojoSerial” class 

9.2.2.10.3 “on_polarizer_sweep_clicked()” function 

This function is responsible for displaying the readout voltage of the chosen 

channel with specified gain and offset while sweeping the polarizer.  
It creates a new instance of the “polarizer_sweep” class and assigns it to 

“polarizer_test_window” if it does not already exist. The function also initializes 

various flags (lesen, linearity_test_flag, flag_measure, polarization_flag, 

polarizer_sweep_flag, and angle_calculation) that are essential for the polarizer 

sweep functionality to ensure that the readout data will pass to this window. It 

shows the “polarizer_test_window” by calling the “show()” function. This action 

makes the window visible to the user. 

It establishes signal-slot connections using the “connect()” functions. These 

connections allow objects to communicate with each other when certain events 

or signals occur. The first connect statement connects a signal from the 

“polarizer_measurement” class to a slot named “AD5544(int, QString, QString)” 
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in the “MojoSerial” class to configure the selected DAC with the specified 

settings of Gain and Offset.  

The second connect statement establishes a connection between a signal named 

“ADC_setting()” emitted by the “polarizer_measurement” class to a slot named 

“ADC_setting()” within the "MojoSerial" class to configure ADC settings.  

The third connect statement is used to reset flags and settings related to the last 

configuration of the “polarizer_measurement”. It connects the signal 

“reset_polarizer_flag()” to the slot “on_reset_clicked()” and resets all 

configurations to default values. The last connect statement connects the 

“movement_completed()” signal from the “polarizer_measurement” class  to the 

“polarizer_settled()” slot to perform actions when the polarizer movement is 

completed. The source code of this function is as follows.  

void MojoSerial::on_polarizer_sweep_clicked() 
{ 
    if (!polarizer_test_window) 
         polarizer_test_window = new polarizer_sweep(this); 

     lesen=false; 
     linearity_test_flag=false; 
     flag_measure=false; 
     polarization_flag=false; 
     polarizer_sweep_flag=true; 
     angle_calculation=false; 

     polarizer_test_window ‐>show(); 
     
connect(polarizer_test_window,SIGNAL(signal_DACsettings_polarizer(int,QString,QString)),this,SLOT(AD5544(i
nt , QString , QString ))); 
     connect(polarizer_test_window,SIGNAL(ADC_settings()),this,SLOT(ADC_setting())); 
     connect(polarizer_test_window,SIGNAL(reset_polarizer_flag()),this,SLOT(on_reset_clicked())); 
     connect(polarizer_test_window, SIGNAL(movement_completed()), this, SLOT(polarizer_settled())); 

} 

Source Code 9.34 Definition of the “on_polarizer_sweep_clicked()” function within the 

“MojoSerial” class 
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9.2.2.10.4 “on_angle_calculation_clicked()” function 

The “on_angle_calculation_clicked()” function is responsible for initializing and 

showing the “Angle_Calculation” window, setting up and configuring the “Angle 

Calculation” mode of the application, connecting signals to appropriate slots for 

handling user interactions and events within that mode. 

A new instance of the “Angle_calculation” class is created if it does not already 

exist. To ensure the readout data transfer to this window, the “angle_calculation” 

flag is set to true, while other flags associated with different windows are set to 

false. The “connect()” functions allow objects to communicate with each other 

when certain signals occur. The first connect statement connects the 

“signal_DACsettings_angle(int,QString,QString)” signal to the slot 

“AD5544(int, QString, QString)”. It is used to configure the selected DAC with 

the specified settings of gain and offset. The second connect statement is used to 

reset flags, variables and all configurations. 

The third connect statement is used to stop continuous mode during angle 

calculations. This is achieved by emitting the “stop_cont()” signal from the 

“Angle_calculation” class and establishing a connection to the “stopcontmode()” 

slot within the “MojoSerial” class by calling the “stopreadcont()” function of the 

Kommunikation object. 

The next connect () function is used to ensure that the polarizer is settled and that 

the signals can be read. It establishes a connection between the 

“movement_completed()” signal emitted by the “Angle_calculation” class and 

the “polarizer_settled()” slot within the current class. This connection indicates 

that when the polarizer movement is completed (settled), the “polarizer_settled()” 

slot should be executed, allowing signal readings to take place. 

The last connect statement is responsible for configuring the system differently 

based on whether the “normal” or “continuous” mode is selected, including 

settings related to data acquisition and communication. It establishes a connection 
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between the “mode_set(QString)” signal emitted by the “Angle_calculation” 

class and the “defined_mode(QString)” slot within the “MojoSerial” class. 

The “defined_mode(QString mode)” slot is responsible for handling the defined 

mode based on the input mode parameter. If the mode is set to "normal" it sets 

the “set_normalmode” flag to true, “set_contmode” flag to false, and calls the 

“ADC_setting()” function for configuring ADC settings and switching to operate 

in normal mode. If "continuous" mode is selected, the system is configured for 

continuous or streaming data acquisition by setting the “set_normalmode” flag to 

false and “set_contmode” flag to true. Also the “startreadcont()” function is used 

to initiate continuous data reading.The source code of this function is as follows. 

void MojoSerial::on_angle_calculation_clicked() 
{ 

    if (!angle_calculation_window) 
         angle_calculation_window = new Angle_calculation(this); 

    // Initialize flags and states 
    angle_calculation=true; 
    lesen=false; 
    flag_measure=false; 
    lightsource_flag=false; 
    polarization_flag=false; 
    linearity_test_flag=false; 
    polarizer_sweep_flag =false; 

    // Show the Angle Calculation window 
    angle_calculation_window ‐>show(); 

    // Connect signals and slots 
connect(angle_calculation_window,SIGNAL(signal_DACsettings_angle(int,QString,QString)),this,SLOT(AD55
44(int , QString , QString ))); 
connect(angle_calculation_window,SIGNAL(reset_polarizer_flag()),this,SLOT(on_reset_clicked())); 
connect(angle_calculation_window,SIGNAL(stop_cont()),this,SLOT(stopcontmode())); 

        connect(angle_calculation_window,SIGNAL(movement_completed()), this, SLOT(polarizer_settled())); 
        connect(angle_calculation_window,SIGNAL(mode_set(QString)),this,SLOT(defined_mode(QString))); 

} 

Source Code 9.35 Definition of the “on_angle_calculation_clicked()” function within the 

“MojoSerial” class 
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9.2.2.10.5 “on_light_source_test_clicked()” function 

This function shows a window dedicated to light source testing. It configures 

flags for controlling the passage of intensity signals to “Light Source Test” 

window, displays the window, and establishes connections to effectively 

handle events or signals emitted by the "light_source_test" class. 

It checks if the “lightsource_window” object already exists. If it does not, it 

creates a new instance of the “light_source_test” class. To ensure that the 

intensity signals pass to the “Light Source Test” window, it sets the 

“lightsource_flag” flag to true. 

The “connect()” functions facilitate communication between the 

“light_source_test” class and the “MojoSerial” class when specific signals 

occur. The signals emitted from the “light_source_test” class are utilized for 

configuring DAC settings and ADC settings, respectively. The source code of 

this function is as follows. 

void MojoSerial::on_light_source_test_clicked() 
{ 
    if (!lightsource_window) 
         lightsource_window = new light_source_test(this); 

     lesen=false; 
     linearity_test_flag=false; 
     angle_calculation=false; 
     flag_measure=false; 
     polarizer_sweep_flag =false; 
     polarization_flag=false; 
     lightsource_flag=true; 
     lightsource_window ‐>show(); 

     
connect(lightsource_window,SIGNAL(signal_DACsettings_lightsource(int,QString,QString)),this,SLOT(AD5544(in
t , QString , QString ))); 
     connect(lightsource_window,SIGNAL(ADC_settings()),this,SLOT(ADC_setting())); 

 } 

Source Code 9.36 Definition of the “on_light_source_test_clicked()” function within the 

“MojoSerial” class 
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9.2.2.10.6 “on_WL_Sweep_clicked()” function 

This function is responsible for initiating a window dedicated to wavelength 

sweep testing. To accomplish this, it first checks if the “WL_sweep_window” 

object already exists; if not, it creates a new instance of the 

“Wavelength_sweep” class associated with this window. Subsequently, it sets 

the “WL_sweep_flag” to true and other relevant flags to false to control the 

passage of readout data to specific windows, and then displays the 

“WL_sweep_window”. Additionally, it establishes connections to manage 

signals emitted by the “Wavelength_sweep” class, such as configuring DAC 

settings and ADC settings. The source code of this function is as follows. 

void MojoSerial::on_WL_Sweep_clicked() 
{ 
    if (!WL_sweep_window) 
         WL_sweep_window = new Wavelength_sweep(this); 

    WL_sweep_flag=true; 

    lesen=false; 
    flag_measure=false; 
    WL_Pol_flag=false; 
    lightsource_flag=false; 
    polarization_flag=false; 
    angle_calculation=false; 
    linearity_test_flag=false; 
    polarizer_sweep_flag =false; 
    WL_sweep_window ‐>show(); 
    
connect(WL_sweep_window,SIGNAL(signal_DACsettings_angle(int,QString,QString)),this,SLOT(AD5544(int 
, QString , QString ))); 
    connect(WL_sweep_window,SIGNAL(ADC_settings()),this,SLOT(ADC_setting())); 
} 

Source Code 9.37 Definition of the “on_WL_Sweep_clicked()” function within the 

“MojoSerial” class 

9.2.2.10.7 “on_WL_Polarizer_Sweep_clicked()” function 

This function serves to initialize a window specifically designed for 

wavelength and polarizer sweep testing. To achieve this, it first checks 

whether the “WL_Polarizer_window” object exists. If not, it creates a new 
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instance of the “Wavelength_polarizer_sweep” class associated with this 

window. Subsequently, it sets the “WL_Pol_flag” flag to true and other 

relevant flags to false, controlling the passage of readout data to specific 

windows, and then displays the “WL_Polarizer_window”. Additionally, it 

establishes connections to handle signals emitted by the 

“Wavelength_polarizer_sweep” class, including configuring DAC settings, 

ADC settings, and detecting when polarizer movement is completed. The 

source code of this function is as follows. 

void MojoSerial::on_WL_Polarizer_Sweep_clicked() 
{ 

    if (!WL_Polarizer_window) 
         WL_Polarizer_window = new Wavelength_polarizer_sweep(this); 

    WL_Pol_flag=true; 
    lesen=false; 
    flag_measure=false; 
    lightsource_flag=false; 
    polarization_flag=false; 
    angle_calculation=false; 
    linearity_test_flag=false; 
    polarizer_sweep_flag =false; 

    WL_Polarizer_window ‐>show(); 

   connect(WL_Polarizer_window,SIGNAL(signal_DACsettings_angle(int,QString,QString)),this,SLOT(AD5544(int ,  
QString , QString ))); 

    connect(WL_Polarizer_window,SIGNAL(ADC_settings()),this,SLOT(ADC_setting())); 
    connect(WL_Polarizer_window, SIGNAL(movement_completed()), this, SLOT(polarizer_settled())); 

} 

Source Code 9.38 Definition of the “on_WL_ Polarizer _Sweep_clicked()” function within 

the “MojoSerial” class 

9.2.3 The “Angle_measurement” class 

The “Angle_measurment” class is designed to display and update real-time 

angle measurement data in a QwtPlot widget while also providing 

functionality for starting and stopping continuous data reading. below is an 

explanation of the actions carried out by this class: 
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 Constructor: In the constructor, the class initializes the user interface 

defined in ui_angle_measurment, creates a QwtPlot widget for real-

time plotting of angle data, and sets up various properties of the plot, 

such as its title and axis labels. It also creates a QTimer named 

timer_angle and connects its “timeout()” signal to two slots: 

“realtimeplot()” and “updateLDC()”. 

 Destructor: the destructor cleans up and deletes the UI. 

 closeEvent() Function: this function is called when the user closes the 

dialog. It clears the data vectors x, y1, and y2, and emits a signal named 

“reset_angleform()” before closing the dialog. This signal is connected 

to the “MojoSerial” class, where it triggers a corresponding function 

responsible for stopping the continuous data reading process. 

 on_readcont_clicked() Function: this function is called when a button 

with the object name “readcont” is clicked to start continuous data 

reading. It calls a function “send_startcontdata()” and starts the 

“timer_angle” to update the plot at regular intervals. 

 on_stopcont_clicked() Function: this function is called when a button 

with the object name “stopcont” is clicked to stop continuous data 

reading. It calls a function “send_stopcontdata()” and stops the 

“timer_angle”, effectively stopping real-time plotting. 

 calculate_measurement(int angle90_0, int angle135_45) Function: 

this function is responsible for converting angle values from their raw 

representation (radians) to degrees. It takes two parameters: 

“angle90_0” and “angle135_45” and calculates the corresponding 

angles in degrees, storing them in the variables “angle90” and 

“angle135”. 
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 updateLDC() Function: this function updates the values displayed on 

LCD widgets (“ui->lcdNumber_angle135” and “ui-

>lcdNumber_angle90”) with the current angles in degrees. It uses the 

“angle90” and “angle135” variables to update the display. 

 Realtimeplot() Function: this function handles real-time plotting of 

angle data. It is connected to the “timer_angle” and is called at regular 

intervals. It updates a QwtPlot widget with the current angle data, 

ensuring that the plot is continuously updated as new data becomes 

available. The function creates two plot curves (blue and red) for 

“angle90_0” and “angle135_45” and appends new data points to the 

curves for real-time visualization. 

9.2.4 The “linearity_test” class 

This class is designed for evaluating the linearity of the system by configuring 

DAC channels, data acquisition, and plotting the acquired data in real-time. It 

also handles user interactions and provides the ability to reset and reconfigure 

the test parameters. Additionally, it manages communication with other 

classes through signals and slots. 

 Constructor: the class constructor initializes the user interface and the 

Qwtplot widget required for plotting data. It sets up a timer 

(DACsettings_timer) to periodically trigger the 

“TimerSlot_DACsettings()” function. 

 closeEvent(QCloseEvent *event): when the user closes the dialog, this 

function is called. It stops the timer (DACsettings_timer) and clears the 

data vectors (x and y). It emits a signal “reset_linearity_flag()” to 

perform some action in the “MojoSerial” class. Finally, it closes the 

dialog. 
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 on_stopBtn_clicked(): this function pauses the ongoing process by 

stopping the timer. It also facilitates the possibility of resuming the 

process by storing the current DAC settings, sweep type, which can be 

either "Gain" or "Offset". 

 on_runBtn_clicked(): this function is executed upon clicking the 

“Run” button and ensures that all essential parameters are correctly 

configured before initiating a sweep operation. It includes checks and 

warnings to assist users in configuring the test effectively. The function 

begins by checking the input fields for start, stop, and step values. It 

verifies whether these fields are empty, and if any of them is empty, a 

warning message is displayed using the “msgbox->warning()” 

mechanism. This serves as a prompt to the user to provide the required 

values for these fields, ensuring that the “sweep_configuration()” 

function can proceed with valid parameters. This function is responsible 

for extracting and configuring the essential sweep parameters and 

preparing them for the subsequent operation. In addition to validating 

sweep parameters, the function undertakes a critical examination of the 

“Gain/Offset” box. It verifies whether any of the channels within this 

box are selected and whether values are provided for the selected 

channels. If none of the channels are chosen or if the corresponding text 

fields remain empty, the function responds with a warning message. 

This message urges the user to select at least one channel and input the 

necessary values for the selected channels. Following the channel 

selection and validation process, the function proceeds to execute the 

“Gain_Offset_DACsetting()” function. This function plays a pivotal 

role in extracting and configuring the DAC settings based on the 

selected channels and their associated values. It ensures that the DAC 

settings align with the user's specified preferences for the sweep 
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operation. An additional task of the function is to ascertain the sweep 

type selection. This is accomplished by examining the states of the radio 

buttons associated with the sweep type, typically labeled as “ui-

>gainBtn” and “ui->offsetBtn”. If neither of these radio buttons is 

selected, the function intervenes by displaying a warning message. This 

message prompts the user to make a clear choice regarding the sweep 

type, which can be either “Gain” or “Offset.” When a sweep type is 

chosen, the function initiates the “sweep_type()” function to configure 

the sweep type and its associated settings. In the final execution, stages 

it checks whether any of the essential parameters, such as DAC settings, 

sweep type, or start value have changed. If any of these parameters have 

changed, the function responds by clearing the existing data vectors 

(commonly referred to as x and y), resetting the sweep counter, and 

reconfiguring the DAC settings to match the updated parameters. 

Upon successfully completing all these validation checks, the function 

proceeds to the culmination of its task. It ensures that the necessary 

conditions, represented by “gain_offset_flag”, “sweep_flag”, and 

“configuration_DAC_flag” are met. When these conditions align, the 

function starts the “DACsettings_timer” timer. This timer serves as the 

mechanism to initiate the sweep process, ensuring that it commences only 

when all essential parameters are properly configured, thereby 

safeguarding the accuracy and reliability of the test. 

 Gain_Offset_DACsetting(): this function is responsible for 

configuring and setting DAC values based on user selections and input. 

The function first checks the state of various radio buttons (e.g., “ui-

>p0”, “ui->p90”) to determine which channels are selected for DAC 

configuration. For each selected channel, it sets specific binary values 

(e.g., “p0,” “p90”) and binary addresses based on the channel's position. 
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then it checks if corresponding text fields (e.g., “ui->textP0”) contain 

values. If a field is empty when the channel is selected, a warning 

message is displayed via “msgbox->warning,” and the 

“gain_offset_flag” is set accordingly. then it concatenates the binary 

representations of all selected channels into the “new_DAC_setting” 

variable. If “new_DAC_setting” is empty or contains all zeros warning 

is displayed otherwise the DAC value is calculated as a percentage 

(“DAC_value_f”) based on the user-provided DAC value. 

 Sweep Configuration (): this function is used to read and process input 

values the from user interface (UI) and prepare them for a linearity test. 

It reads the text values (“start_value”, “stop_value” and “step_value”) from 

the UI and converts them to an integer using the “toInt()” method. Then 

the function scales them to a floating-point value in the range of [0, 100] 

by dividing it by 65535, and then the result is multiplied by 100. These 

scaled values are stored and rounded to integer values. This ensures that 

the value remains an integer, depending on the requirements of the test. 

Finally, to indicate that the configuration process has been completed the 

“configuration_DAC_flag” flag is set to true. 

 sweep_type() : this function determines whether the sweep is a “Gain” 

or “Offset” sweep based on user selections and updates relevant 

variables accordingly. 

The sweep type is determined by inspection of the radio buttons in the user 

interface. If the “gainBtn” radio button is checked, the “gain_sweep” 

boolean variable is set to true by means of “isChecked()” function while 

marking the “offset_sweep” variable as false. This signifies that the test 

will be a “Gain” sweep. If, alternatively, the “offsetBtn” radio button is 

checked, it sets “offset_sweep” to true, indicating an “Offset” sweep. 
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Subsequently, the value of “DAC_value_f” is computed by rounding the 

floating-point value. The “sweep_flag” boolean variable is then set to true, 

signifying the completion of test configuration for the sweep. Lastly, the 

“new_sweep_type” string variable is assigned the value "Gain" or "Offset" 

to specify the type of sweep. 

 TimerSlot_DACsettings(): this function is used for controlling and 

configuring DACs for a sweep operation and is periodically called by 

the timer. Depending on the values of “gain_sweep” and 

“offset_sweep”, it configures the DACs with specific values and 

increments the counter until a stopping condition is met.  

Firstly, an “ADC_settings()” signal is emitted to perform ADC settings, 

and this signal is received in the “MojoSerial” class. Then the type of 

operation is controlled by checking the boolean variables “gain_sweep” 

and “offset_sweep”. 

The “DAC_settings_linearity()” signal is emitted to configure DAC 

channels, and like the “ADC_settings()” signal, it is received in the 

“MojoSerial” class. Depending on whether “gain_sweep” or 

“offset_sweep” is selected, the appropriate parameters are sent. For 

instance, if “gain_sweep” is chosen, it use the function 

“DAC_settings_linearity(offset_value, address, offset_channel)” to 

configure the DAC. Then, by monitoring the “counter” variable, it calls the 

function “DAC_settings_linearity(counter, address, gain_channel)” to 

configure the DAC required for sweeping. 

For the DAC sweeping the counter is incremented by “step_value” until it 

reaches the “stop_value”. Subsequently, the counter is reset to 

“start_value” and both “gain_sweep’ and “offset_sweep” are set to false, 

indicating the completion of the sweep operation. 
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 update_values(): this function receive the readout values, updates the 

“readout_value” variable based on the user's selection channel and then 

triggers “plot()” function to reflect the selected value in a graphical 

representation. 

 Plot(): this function is responsible for creating a curve plot on a QwtPlot 

widget. The x-axis represents the step values, and the y-axis represents 

the readout values. Data points are continuously added to the curve, 

creating a visual representation of the relationship between step values 

and readout values over time. 

 on_reset_clicked(): this function is triggered when a “Reset” button is 

clicked in the user interface. It resets various variables and user 

interface elements to their initial or default values, allowing the user to 

start a new or reconfigure the application. 

 reset_DACsetting(): this function is responsible for resetting the DAC 

settings for different channels and configurations to their initial values. 

It emits the “DAC_settings_linearity()” signal with specific parameters 

for each channel and configuration to set the DAC values to 0. By 

setting these DAC values to 0, it effectively resets the DAC channels to 

their initial states, ensuring that subsequent operations start with the 

default configurations. 

9.2.5 The “Angle_calculation” class 

The purpose of this class is to create a GUI application that can interface 

with a KDC101 device to control and monitor the polarizer angle, perform 

angle calculations and measurements in software in normal mode or 

calculate angles in the hardware with continuous mode. Also, it displays 

angle data in real-time using a Qt-based GUI with a plot. It provides a user-

friendly interface for configuring settings, initiating measurements, and 
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visualizing measurement results in real-time. Additionally, it logs 

measurement data for further analysis.  

 Constructor: the constructor sets up the basic components, timers, and 

signal-slot connections needed for the application.  

Firstly, a QDialog is created to serve as the primary user interface. It was 

designed using the “Ui::Angle_calculation” class via Qt Designer. 

Additionally, essential components are initialized, including an instance of 

the “KDC101” class for interfacing with the external hardware, a user 

messaging QMessageBox named msgbox, and a visual angle data display 

QwtPlot widget named qwtPlot. The qwtPlot widget is customized with 

dimensions, visual attributes like background color and grid lines, and axis 

titles and scales. To enable time-based actions, three timers are set up with 

specific intervals in milliseconds, facilitating scheduled tasks. 

Furthermore, signal-slot connections establish links between various 

objects: “timer_NormalMode” is connected to the “timerSlot_settings” 

slot, the KDC101 object's “move_completed” signal connects to the 

“polarizer_movement()” slot, and “timer_ContMode” is associated with 

the “contMode_sampling” slot. these functions get executed when the 

“timeout ()” signal of related timer is emitted. Finally, the KDC device is 

initialized by opening it for communication and identifying its properties, 

signifying the completion of the setup phase for the application. 

 Destructor: the destructor is responsible for performing cleanup 

operations related to the destruction of an “Angle_calculation” object. It 

ensures that any resources associated with the object are properly released 

before the object is removed from memory. 
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 timerSlot_settings(): this function emits signals responsible for 

configuring settings related to the "Gain" and "Offset" of the selected DAC, 

as well as setting the operation mode. 

 polarizer_movement(): this function begins by emitting a signal named 

“movement_completed()” to indicate that the polarizer's movement 

process has finished, and it's now time to read out the data. Subsequently, 

it checks whether the continuous mode is active. If continuous mode is 

enabled, it proceeds to invoke the “timerSlot_settings()” function, which 

manages various settings associated with the polarizer's movement. 

 closeEvent(QCloseEvent *event): this function is responsible for 

handling the closure of the application's window and performs various 

cleanup and reset operations when the application's window is closed. 

 on_stopBtn_clicked(): this function is used to stop various processes 

associated with normal and continuous modes of operation and to reset 

relevant variables when the “Stop” button is clicked. Additionally, the 

polarizer is moved to a specified start position. 

 on_reset_clicked(): this function is associated with a click event, of the 

button labeled “Reset” and performs a comprehensive reset of various 

parameters, settings, and data storage variables in the application, 

effectively clearing and initializing them to default or initial values. 

 reset_DACsetting(): It is responsible for resetting DAC settings to their 

default or zero values for various channels. 

 on_homeBTN_clicked(): by clicking the “Home” button in the user 

interface a process is initiated to move the polarizer controlled by the “kdc” 

object to a position specified by the “start_pos” value. This action is often 

used to reset or return a device to a predefined reference position. 
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 on_normal_modeBTN_clicked(): this function is associated with a 

button click event labeled “Normal Mode”. Its primary objective is to 

configure and initialize various parameters and flags required for normal 

operation mode. Additionally, it verifies the user input, specifically the 

“averaged_number” field, to ensure proper configuration. In cases where 

the user fails to provide a non-zero value, a warning message is displayed 

to prompt the user for a valid input. 

 on_cont_modeBTN_clicked(): this function is associated with a button 

click event labeled “Continuous Mode”. Its purpose is to set various 

operational flags and parameters to enable continuous mode while 

disabling normal mode. It also clears data collections and calls a 

configuration function to prepare the application for continuous operation. 

 configuration_function(): the “configuration_function()” is responsible 

for the configuration of parameters and flags based on the user inputs. It 

checks if a channel is selected and validates the “Gain” and “Offset” 

values. Then, it calculates the DAC settings within the valid range. Next, 

it calls the “polarizer_sweep_configuration()” function to prepare data 

collection and initializes various variables for further data acquisition and 

processing. It sets flags for successful configuration and triggers related 

timers based on the selected mode (normal or continuous).  

 polarizer_sweep_configuration(): this function prepares the application 

to perform polarizer sweeps using user-specified start, stop, and step 

values. It calculates the necessary step count for the sweep and activates a 

flag to confirm the successful configuration. 

 DACsettings(): this function configures the DAC settings based on the 

user's selection of channels (P0, P90, P45, P135, I0, I1, I2, I3) for signal 

generation. It sets appropriate binary values for the selected channels, 
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specifies the DAC address, offset channel, and gain channel accordingly. 

The function then combines these settings into a single binary string, 

representing the new DAC configuration. Finally, it sets a flag to confirm 

that DAC settings have been successfully configured. 

 realtimeplot(): this function is responsible for real-time plotting and 

logging of angle measurements during continuous mode operation, on a 

QwtPlot widget. It initializes two QwtPlotCurve objects in case they do not 

exist. It configures their appearance and attaches them to the QwtPlot 

widget. The function appends new data points (angles) to the respective 

data series and updates the curves with the new data. After updating the 

plot, it checks if the specified number of steps has been completed. If so, it 

stops the continuous mode and schedules a delay before moving to the 

initial position. If not, it continues with the next step. Additionally, the 

function records angle measurements to a text file for data logging. 

 plot(): this function is responsible for plotting and updating real-time data 

on a QwtPlot widget. It initializes two QwtPlotCurve objects for displaying 

data series related to angles “angle90_0” and “angle135_45” during 

normal mode operation which are calculated within the software. The 

function then appends new data points to the respective data series and 

updates the curves with the new data. After updating the plot, it saves the 

“angle90_0” data to a text file. 

 step_delay() : this function is designed to introduce controlled delay 

between each step of a polarizer sweep, allowing for precise measurements 

or adjustments to be made. It calculates the new position based on the start 

position, the step position and current step count. After determining the 

new position, it instructs the polarizer to move to this position.  
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 contMode_sampling(): this function is part of a continuous mode 

operation. It is responsible for managing the steps involved in the 

continuous mode of data sampling. 

 calculate_angles (float, float, float, float): this function is used to 

calculate angles based on voltage measurements in normal mode and 

involves sampling and angle calculation phases. It computes angles based 

on voltage differences. 

     If the “sampling” flag is true, the measurement is in the sampling phase. The 

code then aims to find maximum and minimum values by sweeping a polarizer 

from 0 to 180 degrees. It checks if “averaged_number” is set to 1. If so, it finds 

max/min values and moves the polarizer step by step to sample the values. If 

“averaged_number” is greater than 1, the code performs multiple iterations, 

which helps in collecting averaged data for better accuracy. Once all steps are 

completed, the code sets “sampling” to false, resets the “curr_steps” counter, 

and moves the polarizer back to the initial position. 

     In the angle calculation phase, “sampling” flag is false and the code calculates 

angles based on measured voltage differences (“I90_0” and “I135_45”) and 

the maximum and minimum values obtained during the sampling phase. It 

computes “Arg90_0” and “Arg135_45” based on these values which represent 

angles. The code determines the sign of “Arg90_0” and “Arg135_45” and 

stores them in the variables “sign90_0” and “sign135_45” respectively. 

Finally, it calls the “define_region” function for further processing based on 

the calculated angles. 

 find_Max_Min(): this function finds and updates the maximum (Max) and 

minimum (Min) values of the two variables, “I90_0” and “I135_45”. It 

does so by comparing the current values of these variables with the existing 

Max and Min values: 
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     If “I90_0” is greater than the current Max90_0 value, it updates Max90_0 with 

the value of “I90_0” ensuring that Max90_0 always stores the maximum value 

encountered during the sampling process. If “I90_0” is less than the current 

Min90_0 value, it updates Min90_0 with the value of “I90_0” ensuring that 

Min90_0 always stores the minimum value encountered during the sampling 

process. 

The same logic is applied to “I135_45” and the corresponding Max135_45 

and Min135_45 variables. This function ensures that Max and Min values are 

updated correctly as data is sampled, allowing subsequent angle calculations 

to be based on the correct maximum and minimum values. 

 define_region(float, bool, float, bool): this function aims to define 

regions and calculate angles based on the arcsine values, signs, and certain 

conditions. It categorizes the angles into different regions and computes 

angle values in degrees: 

The angles are then converted from radians to degrees. After plotting the data, 

the function checks if there are more steps to be processed. If so, it calls 

“step_delay()” to calculate the next position. If all steps are completed, it stops 

the timer, moves the polarizer to the initial position, and resets the 

“curr_steps” counter. 

9.2.6 The “hyperchromator” class 

This class is designed to manage the operation of the Hyperchromator light 

source connected through a serial port. It offers control over various 

functionalities, including wavelength configuration, speed adjustment, 

filter control, and position reading. To interact with the Hyperchromator, 

the class employs specific TML commands documented in [23]. The 

commands are not sent directly as ASCII strings but encoded into binary 

command strings for proper communication with the device. Through the 
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functions described below, this class offers essential control and interaction 

with the Hyperchromator device via the serial port, allowing users to 

configure settings and retrieve information. 

 Constructor: Initializes some variables and connects the “read_serial()” 

function to the “readyRead()” signal of a serial port. This signal is emitted 

when data is available for reading from the serial port. 

 read_serial(): Handles reading data from the serial port. It reads data in 

chunks and processes it to extract relevant information, such as position 

values. It also manages the handling of incomplete messages. 

 open(QString cal_path): Opens the serial port and reads calibration data 

from a file specified by “cal_path”. It sets up the serial port with specific 

settings and initiates other setup actions. 

 initSpeed(): Sets the initial speed for the device. It is part of the 

initialization process. 

 initWL(): Sets the initial wavelength for the device. It's also part of the 

initialization process. 

 close(): Closes the serial port when done using the device. 

 openShutter(): Sends a command to open a shutter, possibly controlling 

some optical path. 

 closeShutter(): Sends a command to close the shutter. 

 setWL(QString wl_input_str): Sets the wavelength for the device based 

on an input string. It converts the desired wavelength to device-specific 

position values and sets the position. 

 getPos(float wl): Retrieves the position associated with a given 

wavelength from calibration data. 
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 getWL(): Retrieves and prints the current wavelength. 

 setPos(float pos): Sets the device's position based on the provided position 

value. It converts the position value to a byte array and sends it to the 

device. 

 updatePos(): Sends a command to update the position. 

 readPos(): Sends a command to read the current position of the device. 

 reset(): Sends a command to reset the device. 

 setSpeed(QString speed_str): Sets the speed of the device based on the 

input speed value. 

 filter1(), filter2(), filter3(), filter4(): Each of these functions sends a 

specific command to the device to select a filter. 

 increment(), decrement(): These functions send commands to increment 

or decrement offsets. 

 clear(): Sends a command to clear offsets. 

9.2.7 The “kdc101” class 

This class is an interface for controlling a KDC101 device through a serial 

port, and it's structured to handle different commands and responses from 

the device. The class includes several functions which perform various 

tasks related to configuring and controlling the device. Each function sends 

specific commands to the device via the serial port. The commands are 

explained in detail in Appendix B.  

 Constructor: This constructor sets up initial values for the class. It 

connects a slot function (“read_serial”) to the “readyRead” signal of a 

“serial_port” object for handling incoming data from the serial port. When 

data becomes available in the serial port's input buffer (e.g., data received 
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from the KDC101 device), the “readyRead()” signal is emitted. The 

connected “read_serial()” slot is then executed to read and process this 

data. 

 Open(): This function initializes and opens the serial port for 

communication with the device. It looks for the correct USB port based on 

vendor and product identifiers. If the port is successfully opened, it sets the 

communication parameters like baud rate and flow control. 

 read_serial(): This slot function is triggered whenever there is data 

available to read from the serial port. It reads data from the port and 

processes it based on certain message types (e.g., confirming homing, 

reading positions, getting velocity parameters). The purpose is to ensure 

that data is correctly received, processed, and actions are taken 

accordingly, all in an asynchronous and event-driven manner. 

 move_rel() and move(): These are movement functions which are used to 

move the stage to a specified relative or absolute positions in degrees, 

respectively by converting it to encoder counts. They construct the 

appropriate command messages and send them to the device through the 

serial port.  

 step_delay(): This function is used in a scenario where the KDC101 device 

is supposed to perform a sequence of movements with a specified step size 

and a step delay in between. It calculates the next position to move to, 

initiates the movement, and increments the step count for subsequent steps. 

 identify(): The “identify()” function sends an identification message or 

command to the KDC101 device, requesting the device to provide some 

form of identification or status information.  

 enable(): This function is responsible for enabling the drive channel of the 

KDC101 device. The “enable()” function sends a command to the KDC101 
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device to enable its drive channel, which allows the device to start 

operating or moving as needed.  

 home(): The “home()” function initiates the homing process of the 

KDC101 stage by sending a specific command through the serial port. 

Homing is essential to establish a known reference point for subsequent 

positioning operations. Every time the device is turned on it is used 

“home()” after “open()” the port. 

 req_pos(): It is responsible for requesting the position of a KDC101 stage 

by sending a specific command message to the device through the serial 

port. It also checks for any write operation failures and provides debugging 

information if necessary. 

 Jog(): This function is used to perform a jogging operation on the KDC101 

stage. It takes the initial and final positions, step size, delay, and speed as 

input parameters, and then it calculates the number of steps required to 

reach the final position. It initiates the movement and increments the 

position until the final position is reached. Debugging messages are 

provided for tracking the progress of the operation. 

 set_vel(): This function is used to set the velocity parameters of the 

KDC101 stage. It takes the maximum velocity as input, calculates the raw 

values for velocity-related parameters, converts them to the appropriate 

format, and sends them to the device. The function is designed to ensure 

that the parameters are correctly formatted and scaled before transmission. 

 req_vel(): This function is used to send a request for velocity parameters 

to the KDC101 stage. It constructs a specific message and sends it to the 

device via the serial port. If the write operation fails, it provides debugging 

information, and if successful, it confirms that the request has been sent. 
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 Disable(): This function is used to send a command which disables the 

drive channel of the KDC101 stage. It constructs a specific message and 

sends it to the device via the serial port. If the write operation fails, it 

provides debugging information, and if successful, it confirms that the 

device has been disabled. 

 close(): This function is responsible for closing the serial port associated 

with the KDC101 device. It ensures that the port is properly closed, and it 

provides a message for debugging and tracking purposes to indicate that 

the port closure was successful. 

9.2.8 The “light_source_sweep” class 

This class serves as the control center for a GUI application that allows 

users to control hardware components (e.g., Hyperchromator, KDC101) 

and set up data acquisition parameters for a wavelength sweep experiment. 

It provides an interface for configuring and starting the experiment while 

visualizing acquired data in real-time using a QwtPlot.  

 Constructor: The constructor initializes the class. It sets up the user 

interface based on the UI defined in the “light_source_sweep.ui” file, 

creates instances of other classes such as Hyperchromator, KDC101, and 

QMessageBox. It also initializes a QwtPlot for data visualization. 

 Destructor: The destructor performs cleanup when the object is destroyed, 

such as deleting the user interface and stopping timers. 

 closeEvent(): The closeEvent function is an event that is triggered when 

the user attempts to close the “light_source_sweep” window. In this 

function, several actions are taken to ensure that resources are properly 

released, and the application is prepared for closure.This includes stopping 

timers, closing hardware components, and clearing data vectors to ensure 

a clean exit. 
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 Button Click Handlers: The class contains slots that respond to button 

clicks from the user interface. These buttons click handlers perform various 

actions, including opening/closing hardware components (HC->open, HC-

>close, HC->openShutter, HC->closeShutter), configuring the light source 

with selected filters (HC->filter1(),  HC->filter2(), HC->filter3() and HC-

>filter4()). 

When the “openBut” button is clicked, this function initiates the opening 

or initialization of the hyperchromator device using the Hyperchromator 

object “HC”. It does so by providing a path to a configuration file required 

operate correctly. 

 Configuration Functions: Functions like 

“polarizer_sweep_configuration()” and “DAC_settings()” handle setting 

up parameters for a polarizer sweep and configuring a DAC based on user 

input. 

 on_setWLBut_clicked(): this function is intended to perform an action 

related to setting the wavelength and set the “WL_set” flag to true, which 

is used to track the state of the wavelength setting. 

 on_readvoltageBtn_clicked(): when the “readvoltageBtn” button is 

clicked, this function checks if the wavelength has been set (“WL_set” is 

true), and if so, it emits a read() signal to initiate a reading operation. This 

signal is received and processed in the “MojoSerial” class. 

 on_read_plot_clicked(): this function handles user input and settings 

related to a light source and polarizer configuration. When the user clicks 

the “read_plot” button, it ensures that all required settings are provided. It 

validates the user input for gain and offset settings and it configures the 

polarizer sweep based on user-defined start, stop and step values. If 

conditions are met, it initiates the polarizer sweep operation using the 
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“kdc” object and starts a timer (“timer_lightsource”) to read data 

periodically for plotting. 

9.2.9 The “light_source_test” class 

 This class is used for light source testing and measurement purposes. It 

provides a user interface for controlling and monitoring a light source and 

related components, with options for selecting channels, setting 

wavelength values, and reading voltage values. This class utilizes the 

button click handlers and configuration functions like “DAC_settings()” to 

handle the setting of parameters for configuring a DAC based on user input. 

Also the class includes the “on_setWLBut_clicked()” function to set the 

wavelength which is described in the “light_source_sweep” class (Section 

7.2.8). 

 constructor: In the constructor, an instance of the “Hyperchromator” class 

is created and initialized. Additionally, the “WL_set” flag is set to false. 

This constructor is called when an object of this class is instantiated, and it 

sets up the initial state and user interface for the class. 

 on_readvoltageBtn_clicked(): This function is responsible for handling 

button clicks, checking various conditions related to wavelength setting, 

DAC settings and input values. It checks which channels are selected and 

calculates DAC values accordingly, and then potentially emitting signals 

for DAC settings if all conditions are satisfied. If any condition is not met, 

it displays a warning message. 

 update_values(): This function is responsible for updating the displayed 

values in the user interface line edit fields with the provided voltages. 

 on_get_wl_clicked() and get_wl_position(QString): These functions are 

used to request and display the wavelength position from the 

Hyperchromator in the user interface of the “light_source_test” class. The 
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“on_get_wl_clicked()” function establishes a connection between the HC 

(Hyperchromator) object and “get_wl_position(QString)” to retrieve the 

wavelength position. The “get_wl_position(QString wl_input)” receives 

the wavelength position from the Hyperchromator and displays it. 

9.2.10 The “polarization_measurement” class 

This class provides a user interface for controlling polarization 

measurements, configuring DAC settings and updating measurement 

values. It also handles events such as window closure and data validation. 

 Constructor and Initialization: The constructor sets up the GUI for 

polarization measurements by creating an instance of the 

“polarization_measurement” class. It initializes an instance of the 

“KDC101” class, which is an interface of the linear polarization filter with 

adjustable angle polarization measurements. 

 update_values(): The function is responsible for updating the values 

displayed in the graphical user interface (GUI). It takes eight QString 

parameters representing values for different channels and ensuring that the 

user can see the most recent measurements in the interface. 

 on_moveBut_clicked(): When the “Move” button is clicked, this function 

extracts the desired position from the GUI input field and instructs the 

“KDC101” object to move the hardware device to that specified angle. 

 on_homeBut_clicked(): This function is designed to move the device to a 

predefined “home” or reference position. 

 on_reqPosBut_clicked(): When the “Request Position” button is clicked, 

this function requests the current position from the hardware device 

controlled by the “kdc” object and sets up a connection to receive and 

display that position using the “get_position” slot. This mechanism ensures 
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that the GUI can continuously update and show the current position of the 

device in real-time as it changes. 

 get_position(QString): This function is a slot that is called in response to 

a signal emitted by the “kdc” object when it has the current position 

information available. This function is responsible for updating the 

displayed position in the GUI. 

 on_identBut_clicked(): When the “Identify” button is clicked, this 

function sends a command to the “KDC101” object (kdc) to initiate the 

identification process of the hardware device it controls. 

 on_read_pushButton_clicked(): When the “Read” button is clicked in the 

GUI, this function performs several checks and actions related to 

configuring and reading settings. It checks for valid gain and offset values, 

DAC channel selection, and a valid position angle before proceeding to 

configure the device. If any of the checks fail, warning messages are 

displayed to guide the user. 

 Gain_Offset_DACsetting(): The “Gain_Offset_DACsetting()” function 

is responsible for configuring the address settings related to a DAC based 

on the user's radio button selections in the GUI.  

 on_resetButton_clicked() and reset_DACsetting(): These functions are 

used to reset various settings and clear fields in the GUI. When the “Reset” 

button is clicked in the GUI, these functions clear user-entered values, reset 

flags, and set the DAC settings to default values, ensuring that the system 

is in a known reset state for the next operation or measurement. 

9.2.11 The “polarizer_sweep” class 

The “polarizer_sweep” class provides a user interface for configuring and 

executing polarization sweeps through different polarization 
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configurations, measuring corresponding voltage outputs, and logging 

data. It interfaces with a KDC101 device and controls polarization-related 

hardware or experiments. 

 Constructor: The constructor initializes the GUI for the polarizer sweep. 

It creates a new instance of the KDC101 class, which is responsible for 

controlling the polarizer. It sets up a QwtPlot widget for displaying 

measurement data. A timer (“timer_polarizer”) is created to control the 

polarization sweep process. 

 polarizer_movement(): This function is a slot that is called when the 

polarizer movement is completed. 

 on_ReadvoltageBtn_clicked(): This function is called when “Read 

Voltage” button is clicked. It performs a series of checks on user inputs 

and configurations, including DAC settings, polarization configuration, 

and sweep parameters. If all the inputs are valid, it initiates a polarization 

sweep process using the timer “timer_polarizer”. During the sweep, it 

continuously collects measurement data and displays it on the QwtPlot 

widget for real-time monitoring. Additionally, this function takes care of 

logging the acquired data into a file for future reference or analysis. 

 DAC_settings(): This function is used to configure DAC settings based on 

the user-selected channel. 

 on_stopBtn_clicked(): This function is called when the “Stop” button is 

clicked. It stops the sweep process and resets relevant flags and variables. 

 on_reset_clicked(): This function is called when a “Reset” button is 

clicked. It resets DAC settings, flags, and clears data for a fresh start. 

 polarizer_sweep_configuration(): This function sets up the parameters 

for the polarization sweep, such as start and stop angles and step size. 
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 plot(float): This function updates and displays measurement data on the 

QwtPlot widget. 

 update_values(): This function receives and processes measurement data 

for display and logging. 

 timerSlot_polarizersweep(): This slot is triggered by a time-out event of 

the “timer_polarizer” timer. It updates both DAC and ADC settings, 

facilitating the progression of the sweep, and managing the completion of 

the sweep process. 

 step_delay(): This function introduces a delay between sweep steps. 

 reset_DACsetting(): It resets DAC settings to default values. 

 on_home_clicked(): This function is called when a “Home” button is 

clicked. It returns the polarization to a home position. 

9.2.12 The “Wavelength_polarizer_sweep” class 

This class is designed to manage and control a complex measurement setup 

involving both a polarizer angle and a wavelength sweep while ensuring 

precise control over measurement parameters and data collection. It 

provides a graphical user interface (UI) for configuring various aspects of 

the system and executing measurement steps. It incorporates the following 

functions: 

 Constructor: This function initializes and establishes connections with the 

KDC101 (polarizer control) and Hyperchromator (wavelength control) 

devices for controlling a measurement process. It also sets up the graphical 

user interface.  

 closeEvent(): This function performs various cleanup and reset actions 

before closing the application's window. It ensures that timers are stopped, 
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data is cleared, and devices (such as the polarizer and wavelength 

controller) are properly closed or reset to their initial states. 

 wl_pol_sweep(): This function manages the sequencing of wavelength and 

polarizer angle sweeps. for each wavelength step, the polarizer sweeps 

from its initial position to the stop position, following a predefined step 

size. Throughout this sweeping operation, it sets DAC and ADC settings, 

handles delays and step transitions, and resets the system to initial positions 

after the last sweep cycle.  

 wl_step_delay(): The purpose of this function is to incrementally adjust 

the wavelength during the sweep process by calculating the next 

wavelength position based on the step size and current step count and then 

updating the Hyperchromator to set the new wavelength position. This 

function is typically called as part of the process to sweep through a range 

of wavelengths during data collection.  

 pol_step_delay(): This function is responsible for calculating and setting 

the next position of the polarizer during a wavelength-polarizer sweep. 

 polarizer_movement(): The purpose of this function is to handle the 

completion of the polarizer movement. When the polarizer has completed 

its movement to a specific angle or position, it typically triggers a signal 

(e.g., the “move_completed” signal). The “polarizer_movement()” 

function is connected to this signal, and its main role is to inform the 

“MojoSerial” class to indicate that the polarizer movement has completed. 

 DACsettings(): This function is responsible for configuring and setting the 

DAC settings based on the user's selection of the channel and parameters 

for subsequent use in data acquisition and control processes. 

 polarizer_sweep_configuration(): This function is responsible for 

configuring the polarizer angle sweep parameters, ensuring that the system 
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is ready to perform the sweep as defined by the user's input values. It reads 

the user inputs from the user interface, specifically the starting angle 

(retrieved from “polarizer_start_value”), the stopping angle (from 

“polarizer_stop_value”), and the step size (from “polarizer_step_value”). 

These values are then converted to floating-point numbers and used to 

calculate the total number of steps or positions the polarizer will sweep 

through. Additionally, it sets a flag called “polarizer_configuration_flag” 

to indicate that the polarizer angle sweep has been configured with the 

user-specified parameters. 

 wavelength_sweep_configuration(): This function is responsible for 

configuring the parameters for the wavelength sweep, ensuring that the 

system is ready to perform the sweep. It reads the user inputs from the user 

interface, specifically the start, stop, and step values of wavelength 

positions. These values are then converted to floating-point numbers and 

used to calculate the total number of steps or positions the wavelength will 

sweep through. Additionally, it sets a flag called “wl_configuration_flag” 

to indicate that the wavelength sweep has been configured with the user-

specified parameters. 

 reset_DACsetting(): This function is responsible for resetting the DAC 

settings for different channels to their initial values. The DAC settings 

control offset and gain values for specific channels used in the system. The 

function sets these settings to zero, effectively resetting them. By setting 

these DAC values to zero, the function ensures that the system starts with 

a clean slate for subsequent measurements or sweeps, where the user can 

configure these settings as needed. 

 on_stopBtn_clicked(): This function is associated with a button click 

event. Its purpose is to terminate an ongoing wavelength and polarizer 

sweep process, reset several flags, including “wl_configuration_flag” and 
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“polarizer_configuration_flag” flag which indicate the validity of the 

wavelength sweep and polarizer sweep configuration, and the 

“DAC_setting_flag” flag which indicates whether the DAC settings are 

properly configured. It also resets the step counters for both the wavelength 

and the polarizer sweeps (“wl_curr_steps” and “pol_curr_steps”) to their 

initial values. Additionally, it commands the KDC101 controller (kdc) to 

move the polarizer to the initial position specified in the user interface (ui-

>polarizer_start_value) and sets the wavelength to the initial position 

specified in the UI (ui->wl_start_value). These actions prepare the system 

for a new measurement or sweep configuration. 

 on_clearBut_clicked(): This function responds to a button named 

“clearBut” click event, and its purpose is to clear the text or values entered 

into three specific input fields for the wavelength sweep within the user 

interface. This can be useful when the user wants to reset or clear the user's 

input in these fields, to start with fresh values or to remove the previous 

input for a new operation. 

 on_openBut_clicked(): The purpose of this function call is to open a 

calibration file with the given file path for use with the Hyperchromator. 

 on_closeBut_clicked(): This function is associated with a button click 

event and is used to close the communication port of Hyperchromator. 

 on_readvoltageBtn_clicked(): This function is responsible for 

configuring settings by calling the “configuration_function()” function and 

preparing the system for reading the voltage data.  

 configuration_function(): This function plays a pivotal role in ensuring 

that all essential settings and configurations are meticulously arranged 

before embarking on a measurement or sweep operation. It validates user 

input, monitors the status of various flags, and calls the execution of 
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specific functions for configuring the polarizer and light source and 

initiating the operation when all conditions are met. 

One of its primary checks involves inspecting the selection of DAC 

channels (channels p0, p90, p45, p135, i0, i1, i2, i3). If none of them are 

selected, the function promptly responds by displaying a warning message 

asking the user to make a choice. If at least one channel is chosen, it checks 

whether the user has provided values for gain and offset in the GUI 

(“gain_value” and “offset_value”). If either or both of these values are 

absent, the function displays a warning message prompting the user to enter 

the required information. If both gain and offset values are provided, it 

performs calculations based on the provided values, calls the 

“DACsettings()” function subsequently to implement required 

configurations.  

Furthermore, this function checks the availability of values essential for 

configuring the polarizer angle sweep. It verifies whether the user has 

thoughtfully provided values for the sweep's starting point, stopping point, 

and step size within the GUI. If any of these values are missing, it displays 

a warning message requesting the user to furnish these necessary inputs. If 
all values are provided, the function calls the 

“polarizer_sweep_configuration()” function. This function handles the 

configuration of a polarizer sweep for the measurement. 

Moreover, the function assesses the presence of values requisite for 

configuring the wavelength settings. these values for the wavelength 

configuration (start, stop, and step) are provided in the GUI 

(“wl_start_value”, “wl_stop_value”, “wl_step_value”). If any of these 

values are missing, it prompts a warning message asking the user to provide 

them. In the event that the user provides all the essential values, the 

function is called the “wavelength_sweep_configuration()” function. This 
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function handles the configuration of a wavelength sweep for the 

measurement.  

Furthermore, the function conducts a final examination, checking specific 
flags labled as “wl_configuration_flag”, “DAC_setting_flag” and 

“polarizer_configuration_flag”. The simultaneous setting of these flags to 

“true” signifies the attainment of all indispensable configurations. Upon 

detecting this state, the function proceeds and orchestrates the movement 

of the polarizer to the designated start position, sets the initial wavelength 

position accordingly, and initiates a timer to seamlessly initialize the 

forthcoming measurement. 

 update_values(float spannung_0 ,float spannung_90,float 

spannung_45,float spannung_135,float spannung_i0 , float 

spannung_i1,float spannung_i2,float spannung_i3): The purpose of this 

function is to update the displayed voltage reading (“readout_value”) in the 

GUI based on the user's specific channel selection. It allows for real-time 

monitoring and visualization of voltage data acquired from different 

channels or configurations within the system. The function takes eight float 

values as input, which represent different voltage readings associated with 

various channels. Depending on the selected channel, it sets the 

“readout_value” to the voltage reading associated with that channel. For 

example, if channel p0 is selected, “readout_value” is set to spannung_0. 

Finally, the function calls the “plot()” function with the “readout_value”. 

By this means the plot in the GUI is updated to display the voltage reading 

associated with the selected channel. 

 Plot(): The purpose of the plot function is to update and display a real-time 

plot in a graphical user interface (GUI) based on incoming data, 

particularly voltage readings (“readout_value”), along with saving 

measurement-related data to a file for logging.  
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 on_home_kdc_clicked(): this function is designed to initiate the 

movement of the KDC101 controller to its home or reference position by 

simply clicking a button in the GUI. This action can be useful for 

initializing or resetting the controller's position before starting a 

measurement or sweep operation. 

 on_openBut_kdc_clicked(): this function is designed to handle a button 

click event in a graphical user interface (GUI) application. When the 

associated button is clicked, this function performs an action related to 

opening a connection to a polarizer by calling the open method on “kdc” 

object. 

 on_reset_clicked(): when the associated “Reset” button is clicked, this 

function performs several actions related to resetting various settings or 

variables. These actions prepare the system for a fresh start or a new 

measurement. 

Additionally, there are functions which are employed for tasks such as 

opening and closing the shutter and configuring filter settings. 

9.2.13 The “Wavelength_ sweep” class 

This class manages the configuration of the polarizer and light source 

components, controls data acquisition, and visualizes data. It provides a 

user-friendly interface for users to interact with and control various aspects 

of the underlying hardware and measurement processes. 

The functionality of this class is like the "wavelength_polarizer_sweep" 

class, with the key difference being that it measures intensity signals at a 

specified polarizer angle, and the polarizer itself is not sweeping. 

 Constructor: The constructor initializes the “Wavelength_sweep” class. 

It sets up the user interface (UI), creates instances of two objects, kdc and 
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HC, which are used to control the polarizer and the light source. It creates 

and configures a QwtPlot for data visualization, calls functions of the kdc 

object, which establishes a connection to the polarizer and identifies it. 

Additionally it sets up a QTimer named “timer_wl” and connects it to the 

“wl_sweep()” slot to control periodic actions for a wavelength sweep. 

 Destructor: The destructor (~Wavelength_sweep()) is responsible for 

cleaning up resources when the class instance is destroyed. It deletes the 

UI and any dynamically allocated objects. 

 closeEvent(): This function is responsible for cleaning up and resetting 

various components and variables before closing the GUI window 

associated with the “Wavelength_sweep” class. It ensures that the 

hardware and data are appropriately configured for termination. 

 on_moveBut_clicked(): This function is responsible for taking the 

polarizer position specified by the user in the GUI, commanding the 

polarizer represented by the “kdc” object to move to that position, and 

setting a flag to indicate that a valid position has been set. 

 on_Read_intensityBtn_clicked(): This function is a user-triggered action 

that initiates the configuration and preparation steps required for reading 

and recording intensity values. It ensures that the necessary setting in place 

for accurate intensity measurements. 

 configuration_function(): This function ensures that the necessary 

settings related to polarization angle, DAC channel, and wavelength 

configuration are in place before initiating a measurement. If any required 

settings are missing, it provides warnings to the user. Once all conditions 

are met, it prepares the system for data acquisition or measurement. 

 DACsettings(): The purpose of this function is to prepare the DAC 

configuration based on the user's selections, allowing the system to apply 
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the correct settings when generating analog signals for measurements. 

Once this function is executed, the DAC settings are updated, and the 

“DAC_setting_flag” is set to indicate that the settings are ready for use. 

 Wavelength_sweep_configuration(): Sets up wavelength sweep 

parameters based on user input. 

 on_reset_clicked(): This function is designed to provide a comprehensive 

reset of the system's state, including DAC settings, motor positioning, UI 

fields, and various internal variables. It ensures that the system is returned 

to a known state or configuration, allowing users to start fresh or 

reconfigure it as needed. 

 reset_DACsetting(): This function resets DAC settings for all channels 

and polarization angles to zero, effectively resetting them to their initial or 

default values. It ensures that the DAC is in a known state before further 

configuration or operation. 

 on_reset_wl_But_clicked(): This function is a slot function that is 

triggered when a button (named “reset_wl_But”) is clicked. This function 

activates filter 1 of the hyperchromator and sets the wavelength to the value 

in “wl_start_pos”.  

 wl_sweep(): This function is called by the timer at regular intervals. It 

performs actions related to DAC settings, ADC settings, and steps of a 

wavelength sweep. 

 step_delay(): This function updates the wavelength position during a 

sweep by incrementing it based on the step size. 

 on_openBut_clicked(), on_closeBut_clicked(), on_f1But_clicked(), 

on_f2But_clicked(), on_f3But_clicked(), on_f4But_clicked(), 

on_openShutterBut_clicked(), on_closeShutterBut_clicked(): These 
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functions provide an interface for controlling the behavior of the light 

source represented by the “HC” object and are linked to button clicks, 

indicating user-initiated actions which are explained in section 9.2.12. 

 on_reqPosBut_clicked(): When the “reqPosBut” button is clicked, this 

function requests the position information from the polarizer represented 

by the “kdc” object and sets up a connection to receive and process the 

position data once it is available.  

 get_position(QString pos_str): This function is responsible for updating 

a UI element with a received position value and formatting it with the 

degree symbol. It allows the user to see the current position information in 

the UI. 

 on_homeBut_clicked(): This function is responsible for triggering a 

“home” operation of the polarizer represented by an “kdc” object when the 

user clicks the “Home” button in the user interface. 

 on_stopBtn_clicked(): This function is associated with a user interface 

button click event. When the user clicks the “Stop” button in the user 

interface, this function is executed. This function is responsible for 

stopping a timer, resetting some variables and flags, and potentially 

resetting the wavelength to its initial value. 

 update_values(...): This function dynamically updates and visualizes data 

on the GUI based on the user's selection of channels and is an essential 

component for monitoring and displaying real-time data in the application. 

 plot(float readout_value): This function is responsible for real-time data 

plotting on a graph in the GUI and logging data to a text file. 
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10 Measurement results 

In this chapter, the measures are presented which have been acquired using the 

system described in the chapters before. The measurement results are structured 

into subsections, which correspond to the buttons or functions of the main 

window. The functionality of these buttons has been explained in the previous 

chapters, and now the results which are obtained using these functions are 

described. 

10.1 Single Readout of sensor channels 

After configuring the DAC channels and selecting “Normal Mode” in the “Mode 

Selection” field, clicking the “Lesen” button will trigger the measurement of the 

AD7980 ADCs corresponding to the P0-P135 sensor channels and the I0-I3 

intensity signals voltages, which will then be displayed in the “MojoSerial” GUI . 

Figure 10.1 shows the result of an experiment where the “RELNEGREF” DAC 

channel of readout channel “P90” is set to 100 percent. By this means the offset 

of channel “P90” is set to the largest possible value. After applying the mentioned 

settings, the ADC output “P90” is observed to be 2.3V and the ADC “P0” displays 

negligible voltage.  As the remaining DACs are unconnected to the board, all 

ADCs read the maximum value of 2.99V which is the input voltage of the board.  

   

Figure 10.1 The display of readout voltages 
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10.2 Continuous Angle Measurement 

This measurement is utilized to validate angle measurement data obtained from 

the FPGA without the application of the polarizer and light source. After 

configuration of the DAC channels and selecting “Continuous Mode” in the 

“Mode Selection” field, clicking the “Angle_measurement” button will trigger 

the opening of a new window.  

In Figure 10.2, the calculated angles are displayed in a real-time plot, with the 

“RELNEGREF” channel of DAC “P90” set to 100 percent and for DAC “P0”, 

both “RELNEGREF” and “Uin” channels are set to 0 percent. The same applies 

to DAC “P90” for the “Uin” channel. The x-axis of the plot represents time in 

milliseconds [ms], while the y-axis corresponds to the measured angles in degrees 

[°]. It can be seen that initially, the measured angles are zero, indicating sampling 

during the early phase of data acquisition. Subsequently, after a certain duration, 

the measured angles stabilize and remain constant over time. The absence of the 

light source and polarizer during the measurement, leading to consistent readings 

for the measurement angles.  

By mathematically calculating angles from equations (2.16)- (2.23) in Chapter 2 

and comparing them with the measured angles, it can be deduced that the results 

align with expectations for both angles. 

 

Figure 10.2 Plot of calculated angles in continuous mode 
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10.3 “Linearity_Test” button 

In this section, linearity testing is conducted by selecting “Sweep Type” gain for 

one test and “Sweep Type” offset for another. Voltage data is plotted in both 

scenarios. For these tests, channel “P0” is selected, the “Sweep Configuration 

DAC” is set with a start value of 0, stop value of 65535, and step size of 1000. 

Figure 10.3 illustrates the readout voltages under the “gain” sweep type, while 

Figure 10.4 presents the readout voltages under the “offset” sweep type. 

 

Figure 10.3 Linearity test for gain sweep 

 

Figure 10.4 Linearity test for offset sweep 

As the gain value increases, a discernible decrease in the output voltage is 

observed, as illustrated in Figure 10.3. This reduction is a consequence of the 
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increasing prominence of negative values, as evidenced in formulas (5.35) and 

(5.36). While the ADC's input voltage range being limited to zero volts, the 

minimum value is constrained to zero volts in the measurements. 

In contrast, as the offset value increases, the output voltage also rises 

proportionally. The output voltage eventually stabilizes at 2.4V, representing the 

maximum attainable value, as depicted in Figure 10.4. 

The correctness of the linearity test is evident in these figures, aligning with the 

expectations and the explanation provided in section 5.3.1.3. 

10.4 Test with Manual Polarizer Angle Setting 

This measurement is designed to illustrate the single readout voltages of all 

channels under the specified polarizer angle and DAC configurations. Figure 8.5 

presents the measurement results obtained from a manual polarizer test, where 

DAC channel P0 was selected with an offset value of 65535, a gain value of 0, 

and the polarizer configured at 90°. 

To verify the correctness of the configuration, the position of the polarizer can be 

requested. By pressing the 'Request Position' button the specified position is 

displayed in the field box. 

 Subsequently, clicking the 'Read' button reveals the readout voltages of channels 

in the corresponding fields. Due to the DAC settings of gain and offset values for 

DAC P0, the readout voltage for this channel reaches 2.33V, closely approaching 

the maximum limit of 2.4V. For channel P90, as no specific DAC settings are 

applied, the readout voltage remains at zero volts. Since the other channels are 

not connected on the board, they display a readout voltage of 2.999954V. 
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Figure 10.5 Manual polarizer test 

As depicted in Figure 10.5, the measurement results meet expectations by 

accurately reflecting the anticipated behaviors associated with the selected DAC 

configurations and the readout voltage of other channels. Additionally, the system 

demonstrates its ability to communicate with the polarizer, configuring it at the 

specified angle. 

10.5 Sweep of Polarizer Angle 

This measurement is used to assess the sensor performance as the polarizer varies 

smoothly its angle from the initial value to the final value, using a predetermined 

step value. To evaluate the precision of this function, DAC channel “P0” is 

configured with an offset value of 65535 and a gain value of 13107. 

Subsequently, the polarizer undergoes a sweep from 0 to 180 degrees in 10-

degree increments. The measured voltage values are plotted in Figure 10.6. As 

observed during the sweep, the readout voltage changes in response to angle 

change reaching its minimum at 0° and 180° degree and its maximum around 90°.  

This behavior aligns with expectations, as the polarizer, when aligned with the 

polarization filter at 0 or 180 degrees, blocks or significantly attenuates light that 
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is not aligned with this polarization. Consequently, at these angles, minimal light 

is anticipated to pass through the polarizer, resulting in a lower readout voltage. 

Conversely, when the polarizer is aligned with the polarization filter at 90 

degrees, it allows light polarized in this direction to pass through most effectively. 

This leads to a higher readout voltage at this angle due to increased light 

transmission through the polarizer. 

For intermediate polarizer angles, between 0 and 90 degrees or 90 and 180 

degrees, the readout voltage is expected to display intermediate values. This is 

because these configurations allow partial transmission of light through the filters 

at 45 and 135 degrees.  

 

Figure 10.6 Polarizer sweep test 

In summary, the measurement result aligns with expectations based on the 

principles of polarimetry. The configured settings and the observed voltage 

changes during the sweep are consistent with the anticipated behavior of the 

system under the specified DAC configurations and polarizer angle variations. 

10.6 Angle Measurement 

As previously explained, angles can be calculated both in software and hardware. 

Consequently, tests have been conducted to assess the measurement accuracy in 

both modes. Channel P0 was chosen with a gain value of 13107, an offset value 
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of 65535, and polarizer angles ranging from 0 to 180 degrees, with a step value 

of 10 degrees. 

Figure 10.7 presents the result of angle calculation in software. In this mode, a 

configurable number of samples is taken from the sensor intensity signals for each 

polarizer angle. The average and in turn the corresponding angle is calculated and 

plotted in the GUI. 

 

Figure 10.7 Angle Measurement for a polarizer angle sweep from 0° to 180° degrees with 

angle calculation in software 

Figure 10.8 shows the result of angles computed by digital logic in the FPGA. In 

this mode, the polarizer performs a sweep for sampling across the 0 to 180-degree 

range with a 10-degree step, after which the calculated angles are transmitted 

from the FPGA and plotted. 

 

Figure 10.8 Angle Measurement for a polarizer angle sweep from 0° to 180° degrees with 

angle calculation in the FPGA hardware 
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10.7 Light Source Test 

The “Light Source_Test” button serves the purpose of establishing a connection 

via the serial port between the PC running the Qt application and the light source. 

Afterwards the light source can be configured including selecting filters and 

wavelengths. Figure 10.9 shows the GUI associated with this measurement 

process. During this test, the following steps are carried out: 

By pressing the “open port” button, a connection via the serial port between Qt 

and the light source is established. A wavelength within the range of 250 to 1100 

nm. The button “set wavelength” is pressed to finalize the light source wavelength 

configuration. In the shown case, the wavelength is set to 650 nm.  

The “Get wavelength” button is used to retrieve and display the wavelength value 

in a text box. Once the DAC channels are selected and configured, pressing the 

“read” button will acquire intensity signals from all ADC channels and display 

them accurately in their respective channels. 

 

Figure 10.9 Light Source communication and configuration to read intensity signals 
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10.8 Wavelength Sweep 

A Wavelength sweep between 250 to 1100 nm is performed in steps of 50nm 

using the “WL_Sweep_pol_fix” window while the polarizer angle is set at 90°, 

and the DAC channel P0 is configured with a gain value of 13107 and an offset 

value of 65535. Figure 10.10 displays the measurement results obtained with 

these configurations. 

 

Figure 10.10 Light source test with wavelength sweeps and polarizer at 90° 

The sensor seems to have its highest spectral sensitivity in the wavelength range 

of visible light between 380nm and 750nm. 

10.9 Wavelength and Polarizer Angle Sweep 

Using the “WL_Sweep_Pol_Sweep” window the sensor sensitivity can be 

measured as a function of both the polarizer and the wavelength. In the test result 

shown in figure 10.11, the DAC channel P0 is configured with a gain value of 

13107 and an offset value of 65535. Additionally, for each wavelength ranging 

from 250 to 1100 nm in 50 nm steps, the polarizer sweeps through an angle range 

from 0 to 180 in 10-degree steps. Throughout this procedure, the readout intensity 

signals are plotted as a function of the polarizer's angle position.  
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Figure 10.11 Sensor sensitivity as a function of the polarizer angle and for light with different 

wavelengths 

As depicted in Figure 10.11, the measurement results closely adhere to the 

expected values. The sensor exhibits highest spectral sensitivity within the 

wavelength spectrum of visible light, specifically ranging from 380nm to 750nm, 

as described in section 10.8. Furthermore, the configured settings, coupled with 

the discerned voltage alterations throughout the sweep, demonstrate a remarkable 

coherence with the expected behavior of the system. This alignment holds true 

under the defined DAC configurations and variations in polarizer angles, 

affirming the reliability and accuracy of the experimental setup. The confluence 

of these factors not only validates the sensor's performance within the specified 

wavelength range but also attests to the robustness of the system in responding 

predictably to dynamic experimental conditions. 
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11 Conclusion & Outlook 

This master thesis presents the design and implementation of a signal processing 

chain for the optical determination of rotation angles. This is achieved through 

the utilization of four sensors, which are realized as photodiodes equipped with 

integrated polarization filters and a hardware setup which amplifies, corrects for 

offsets and digitizes the sensor signals. Additionally, a high-precision CORDIC 

(Coordinate Rotation Digital Computer) hardware design is implemented on an 

FPGA using Verilog. Moreover, the integration of a monochromatic light source 

with configurable wavelength and polarizer with configurable plarization angle, 

is deployed to perform automated measurements through an QT application 

executed on a Linux PC. Via the GUI of the created QT application, the user can 

control all DACs of the hardware setup, configure the polarizer angle, and the 

light source wavelength and readout the digitized intensity voltages or calculated 

angles.  

In summary, it can be said that the thesis has effectively achieved its primary 

objective. Nonetheless, it's noteworthy that only the two sensors channel P0 and 

P90 are readout in the current setup and the hardware setup can be extended for 

two more sensors channels P180 and P270.  
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Appendix A: Controlling the light source  

The control of the light source is achieved through the transmission of high-level 

command or low-level command.  

In the high-level remote control, the Hyperchromator program is running and 

through the LabVIEW Shared Variable Interface allows to send high-level 

command such as “set_wave”, where allowing direct specification of the desired 

wavelength. During this automated process, the system evaluates wavelength 

calibration, adjusts the motor accordingly, and switches to the correct long-path 

order sorting filter.  

On the other hand, the low-level remote control provides users with manual 

control capabilities, eliminating the need to run the Hyperchromator program in 

the background. In this mode, the user can command the grating to specific motor 

positions and configure filters or the shutter according to their experimental 

requirements. This manual control option offers greater flexibility and hands-on 

customization, allowing user to adapt the light source to specific experimental 

conditions and parameters.  In the scope of this thesis, the chosen method for 

manipulating the light source is the low-level remote control. 

1  Principle of low-level remote control 

After switching on the Hyperchromator, the internal motor controller initiates 

motor control loops, performs motor indexing and subsequently transitions to an 

idle state, waiting to receive commands through its RS-232 interface. 

The internal motor controller is a high-performance motion controller which uses 

the proprietary programming language TML. Through the RS-232 interface, 

users can send direct TML commands at any time, thereby superseding the 
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internal program loops. The TML commands are used to describe the functions 

and they are encoded into binary command strings. 

The most important function is to command the grating motor to a new position 

for a desired wavelength. There is a calibration table (wavelength_calib) in the 

configuration directory. In these editable text files, the first column is the 

wavelength (nm), the second is FWHM (nm), the third column is the motor 

position in internal motor units (“counts”).  

Target wavelength = 440nm -> target motor position = 140000 (counts)  

The motion controller, after driving to some target position in the previous move, 

is now in idle mode and waits for commands. The relevant parameter here is 

CPOS, the “commanded position”. The controller is in “absolute position mode” 

(CPA), thus CPOS is given as absolute position. Changing CPOS, followed by 

the update command UPD will cause the controller to resume motion with the 

pre-set parameters for speed and acceleration, until the new target position is 

reached:  

Example:  

CPOS = 140000; //target position for 440nm in the case of the calibration table 

above  

UPD; // go to it!  

The order-sorting filter wheel (“Mot2”) as well as the shutter (“MOT1”) are 

driven via function calls without parameters. For example, to open or close the 

shutter, two independent functions, labeled Mot1Pos1 and Mot1Pos2 are used.  

Example:  

CALL Mot1Pos1; // opens the shutter  

CALL Mot1Pos2; // closes the shutter 
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Likewise, the filterwheel may be called as Mot2Pos1. Mot2Pos4 with positions 

for 4 filters.  

The filter and shutter positions are fixed within the controller. However, 

sometimes it may be necessary to slightly tune the positions, e.g. to avoid 

vignetting by a filter’s edge. This can be accomplished by functions MotINC and 

MotDEC, incrementing or decrementing the position of the currently selected 

motor and position (i.e. the last issued MotxPosy command). These offsets are 

stored internally until the ClearOffsets function is called. In the Hyperchromator 

program, all offsets are set once during initialization. 

2 Communication Protocol 

The communications protocol is based on a binary command message structure 

where each byte has a designated role in conveying information about the 

message length, axis/group ID, operation code, data, and a checksum for error 

checking.  

2.1 Binary command message structure 

Byte 1: Message length (number of bytes-2) 

Byte 2: Axis/Group ID – high byte 

Byte 3: Axis/Group ID – low byte 

Byte 4: Operation code – high byte 

Byte 5: Operation code – low byte 

Byte 6: Data (1) – high byte 

Byte 7: Data (1) – low byte 

Byte 8: Data (2) – high byte 

… 

Byte13: Data (4) – low byte 

Last byte: Checksum CS (modulo 256) 
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 Byte 1: Message length (number of bytes-2): This byte indicates the total 

length of the message in terms of the number of bytes. 

 Byte 2-3: Axis/Group ID – high byte and low byte: These two bytes use 

a complicated bit-wise encoding. For the Hyperchromator, axisID=255, 

these bytes are 0F and F0. 

 Byte 4-5: Operation code – high byte and low byte: These two bytes 

together represent either a command code of the TML language or the 

register address of a TML register or a combination.  

 Byte 6-13: Data (1) to Data (4) – high byte and low byte: These bytes 

carry the actual data associated with the operation. Depending on the 

specific message and operation, the data bytes can represent parameters, 

values, or other relevant information.  

 Last Byte: Checksum CS (modulo 256): The last byte serves as a 

checksum, calculated using modulo 256.  

2.2 List of commands 

In this section the employed commands are explained. Binary data is given as 

hexadecimal numbers. 

 The “hwhb”, “hwlb”, “lwhb” and “lwlb” are Abbreviations of 

high_word_high_byte, high_word_low_byte, low_word_high_byte and 

low_word_low_byte respectively. 

2.2.1 Set Target Position 

the target position in internal units (counts) for the next grating motor move. The 

move will not be started until the UPD command is sent.  

TML: CPOS = position (Integer);  

Register address (re-coded): 24 9E 
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Binary: 08 0F F0 24 9E lwhb lwlb hwhb hwlb CS 

 

2.2.2 Update Position 

start motor move to last set CPOS. 

TML: UPD; 

Command code: 01 08  

Binary: 04 0F F0 01 08 0C 

 

2.2.3 Set Speed 

 sets the motor speed in internal units for the next grating motor move. The change 

will be effective with the next CPOS and UPD command. Speed is a fixed point 

number, with the first word describing the decimals (in multiples of 1/65536, for 

example 0.1 will be shown as 0.1*65536 rounded to 6554 = 0x199A) and the 

second word describing the integer part. Usually, it should be OK to use only the 

integer part, thus setting the lower word to zero. NOTE: make sure that speed is 

not above the safe maximum value, which is given by the key “speed” in 

config.txt.  

TML: CSPD = speed (fixed point);  

Register address (re-coded): 24 A0  
Binary: 08 0F F0 24 A0 lwhb(0) lwlb(0) hwhb hwlb CS  
 

2.2.4 Reset drive 
 

reset the drive and index the motor after control errors. The behavior is similar to 

power-on of the hardware.  

TML: RESET;  

Command code: 04 02 

Binary: 04 0F F0 04 02 09 
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2.2.5 Read current pos  

reads the current position of the motor. If the system is an open loop, there is no 

position feedback and one needs to rely on the current target position parameter 

TPOS of the trajectory generator. If no pulses are lost (overspeed!), this position 

corresponds to the motor position. If the system has closed loop feedback, the 

encoder provides the actual motor position APOS. Most Hyperchromators are 

closed-loop. Again, we need to provide the correct register address to either read 

TPOS or APOS.  

TML: ?APOS ;  

Command code: B0 05  

Axis requested: 0F F0 (code for axisID=255, standard for the Hyperchromator)  

Register address: 02 28 (APOS reg_h reg_l)  

Expeditor address: 0F F1 (master axis for communication in a multi-axis 

system)  

Binary: 08 0F F0 B0 05 0F F1 reg_h reg_l CS  

The command returns the current APOS value in the following form: 

Binary: 4C 0C 0F F1 B4 05 0F F0 02 28 pos_lwhb pos_lwlb pos_hwhb 
pos_hwlb CS 

2.2.6 Call function 

This command calls a function stored in non-volatile memory with the motion 

controller. The function label is associated to an internal memory address, which 

is being transferred. To find the memory addresses related to all available 

functions, open the motion controller configuration, which is of the type *.t.zip 

(e.g. Hyperchromator_enc.t.zip) within the configs/calibration directory of your 

Hyperchromator. Within this ZIP file, you can view the file variables.cfg and 

locate the list of function labels close to the bottom of this file.  
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LABEL MOT2POS1 @0x407D  

LABEL MOT2POS2 @0x4086  

LABEL MOT2POS3 @0x408F  
LABEL MOT2POS4 @0x4098  
…  
 
TML: CALL function_label;  
Command code: 74 01  
Binary: 06 0F F0 74 01 reg_high reg_low CS  
Example:  
CALL Mot2Pos3: 06 0F F0 74 01 40 8F 49  
 

Function label Action 
MOT1POS1 Shutter OPEN 
MOT1POS2 Shutter CLOSE 
MOT2POS1 Filter 1 
MOT2POS2 Filter 2 
MOT2POS3 Filter 3 
MOT2POS4 Filter 4 
RELAISOFF Open the relais switch 

(optional! for Lamp ON via 
the extension connector) 

RELAISON Close the relais switch 
(optional! for Lamp OFF 

via the extension connector) 
MOTINC Increment the motor 

position offset of the last 
active motor and position 

(last MOTxPOSy 
command) 

MOTDEC Decrement the motor 
position offset of the last 
active motor and position 

(last MOTxPOSy 
command) 

CLEAROFFSETS Clear ALL offsets 

Table 1: List of public functions in Hypercromator 

Example: switching shutter between open/close  
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06 0F F0 74 01 40 A1 5B  

06 0F F0 74 01 40 AA 64 

Appendix B: Polarizer motor control 

1 Communications Protocol  

The communications protocol is based on a message structure that always starts 

with a fixed-length, 6-byte message header which, in some cases, is followed by 

a variable-length data packet. For simple commands, the 6-byte message header 

is sufficient to convey the entire command. For more complex commands that 

involve passing a set of parameters, the 6-byte header is inadequate and in this 

case the header is followed by the data packet.  

The header part of the message always contains information that indicates 

whether a data packet follows the header and if so, specifies the number of bytes 

that the data packet contains. This allows the receiving process to accurately 

determine the start and end of messages, facilitating proper message handling. 

The 6-bytes in the message header are shown below: 

 

Figure 1: The 6-bytes message header structure 

The meaning of some of the fields depends on whether the message is followed 

by a data packet or not. This is indicated by the most significant bit in byte 4, 

called the destination byte, therefore the receiving process must first check if the 

MSB of byte 4 is set. If this bit is not set, then the message is a header-only 

message, and the interpretation of the bytes is as follows:  

 message ID: describes what the action the message requests.  

 param1: first parameter (if the command requires a parameter, otherwise 

0)  
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 param2: second parameter (if the command requires a parameter, 

otherwise 0)  

 dest: the destination module  

 source: the source of the message 

If the MSB of byte 4 is set, then the message will be followed by a data packet 

and the interpretation of the header is the following:  

 message ID: describes what the action the message requests  

 data packet length: number of bytes to follow header  

Note: although this is a 2-byte long field, currently no data packet exceeds 255 

bytes in length.  

 dest | 0x80: the destination module logic OR’d with 0x80 (noted by d|)  

 source: the source of the data 

The source and destination fields are used to indicate the source and 

destination of the message. When the host sends a message to the module, it 

uses the source identification byte of 0x01 (meaning host controller (i.e., 

control PC)) and the destination byte of 0x50 (meaning “generic USB unit”). 

In messages that the module sends back to the host, the content of the source 

and destination bytes is swapped. 

1.1 General message exchange rules  

The type of messages used in the communications exchange between the host and 

the sub-modules can be divided into 4 general categories:  

(a) Host issues a command, sub-module carries out the command without 

acknowledgement (i.e., no response is sent back to the host).  

(b) Host issues a command (message request) and the sub-module responds by 

sending data back to the host.  

(c) Following a command from the host, the sub-module periodically sends a 

message to the host without further prompting.  
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These messages are referred to as status update messages. These are typically 

sent automatically every 100 msec from the sub-module to the host, showing, 

amongst other things, the position of the stage the controller is connected to. The 

meters on the Thorlabs User GUI rely on these messages to show the up-to-date 

status of the stage.  

(d) Rarely – error messages, exceptions. These are spontaneously issued by the 

sub-module if some error occurs. For example, if the power supply fails in the 

sub-module, a message is sent to the host PC to inform the user.  

Apart from the last two categories (status update messages and error messages), 

in general the message exchanges follow the SET -> REQUEST -> GET pattern. 

The SET part of the trio is used by the host to set some parameter or other. If the 

host requires some information from the sub-module, then it may send a 

REQUEST for this information, and the sub-module responds with the GET part 

of the command. 

 

1.2 Conversion between position, velocity and acceleration values in 

standard physical units and their equivalent Thorlabs Software 

parameters.  

The physical units needed to describe position, velocity and acceleration are 

related to position and time measurement units (millimetres/degrees and 

seconds). In motion controllers, however, normally the system only knows the 

distance travelled in encoder counts (pulses) as measured by an encoder fitted to 

the motor shaft. In most cases the motor shaft rotation is also scaled down further 

by a gearbox and a leadscrew. In any case, the result is a scaling factor between 

encoder counts and position. The value of this scaling factor depends on the stage. 

In the section below this scaling factor will be represented by the symbol EncCnt. 

Time is related to the sampling interval of the system, and as a result, it depends 

on the motion controller. Therefore, this value is the same for all stages driven by 
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a particular controller. In the sections below the sampling interval will be denoted 

by T. 

The sections below describe the position, velocity, and acceleration scaling 

factors for all the controllers and stages that are used with these controllers. The 

symbols POSAPT, VELAPT and ACCAPT are used to denote the position, 

velocity and acceleration values used in Thorlabs commands, whereas the 

symbols Pos, Vel and Acc denote physical position, velocity and acceleration 

values in mm, mm/sec and mm/sec2 units for linear stages and degree, degree/sec 

and degree/sec2 for rotational stages.  

As Thorlabs parameters are integer values, the Thorlabs values calculated from 

the equations need to be rounded to the nearest integer. 

Brushed DC Controller driven stages: 

Mathematically: 

POSAPT = EncCnt × Pos 

VELAPT = EncCnt × T × 65536 × Vel 

ACCAPT = EncCnt × T2 × 65536 × Acc 

where T = 2048 / (6 × 106) 

The value of “EncCnt” and the resulting conversion factors are listed below for 

KPRM1E/M stage: 

 

2 Motor Control Messages 

The ‘Motor’ messages provide the functionality required for a client application 

to control one or more of the Thorlabs series of motor controller units. The motor 
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messages can be used to perform activities such as homing stages, absolute and 

relative moves, changing velocity profile settings and operation of the solenoid 

state (on solenoid control units). In the following the messages which are used in 

this project are explained. As KDC101 is a single-channel controller, the 

addressed channel is identified in the Chan Ident byte and is always set to channel 

1 (0x01). 

2.1 MGMSG_MOD_IDENTIFY 

This message instructs the hardware unit to identify itself by flashing its front 

panel LEDs. The command structure of this is 6 bytes as follow: 

0 1 2 3 4 5 

Header only 

23 02 Chan Ident 00 d s 

 

2.2 MGMSG_MOD_SET_CHANENABLESTATE 

This message is sent to enable or disable the specified drive channel. The 

command structure of this message is 6 bytes: 

0 1 2 3 4 5 

Header only 

10 02 Chan Ident Enable State d s 

 

To enable the channel, the Enable State parameter is set to “0x01” and to disable 

channel, this parameter is set to “0x02”. 

2.3 MGMSG_MOT_GET_POSCOUNTER 

This message is intended for configuring the real-time position count within the 

controller. The stage is homed immediately after power-up during which its 

position is unknown since the stage can freely move when power is off. Once the 
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homing process is completed the position counter is automatically adjusted to 

display the actual position. From this point onward, the position counter always 

shows the actual absolute position. The command structure in this message is 12 

bytes, 6-byte header followed by 6-byte data packet as follows: 

0 1 2 3 4 5 6 7 8 9 10 11 

Header Data 

12 04 06 00 d s Chan Ident position 

 

The updated value of the position counter is provided as a 32-bit signed integer, 

encoded in the Intel format. 

2.4  MGMSG_MOT_SET_VELPARAMS, 

MGMSG_MOT_REQ_VELPARAM, 

MGMSG_MOT_GET_VELPARAMS  

These functions are used to set the trapezoidal velocity parameters for the 

specified motor channel.  

SET:  

The Command structure of this function has 20 bytes, which is 6-byte header 

followed by 14-byte data packet as follows: 

 

0 1 2 3 4 5 6 7 8 9 10 11 

Header Data 

13 04 0E 00 d s Chan Ident Min Velocity 

 

12 13 14 15 16 17 18 19 

Data 

Acceleration Max Velocity 
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The minimum (start) velocity is 4-byte value and always set to zero. The 

acceleration is 4-byte unsigned long value. The maximum (final) velocity is 4-

bytes unsigned long value.  

REQUEST:  

Command structure of this function is 6 bytes in the following format: 

0 1 2 3 4 5 

Header only 

14 04 Chan Ident 0X d s 

 

GET:  

Response structure of Get function is 20 bytes. The 6 bytes header followed by 

14 bytes data packet in the following format: 

 

0 1 2 3 4 5 6 7 8 9 10 11 

Header Data 

15 04 0E 00 d s Chan Ident Min Velocity 

 

12 13 14 15 16 17 18 19 

Data 

Acceleration Max Velocity 

 

2.5 MGMSG_MOT_MOVE_HOME  

This command is used to initiate a home movement sequence on the motor 

channel. It has a TX structure in 6 bytes with the following format: 

 

0 1 2 3 4 5 

Header only 

43 04 Chan Ident 0X d s 
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2.6 MGMSG_MOT_MOVE_HOMED  

In this command, once the home sequence is completed, the controller sends a 

“homing completed” message. However, there is no response to the initial 

message. This message is received as an RX structure consisting of 6 bytes in the 

following format: 

 

0 1 2 3 4 5 

Header only 

44 04 Chan Ident 0X d s 

 

2.7 MGMSG_MOT_MOVE_RELATIVE 

This command can be used to start a relative move. There are two versions of this 

command: a short version (6-byte header only) and a long version (6-byte header 

plus 6 data bytes). When the short version is used, the relative distance parameter 

used for the move will be the parameter sent previously by a 

MGMSG_MOT_SET_MOVERELPARAMS command and the relative distance 

is encoded in the data packet that follows the header.  

Short version:  

TX structure is 6-bytes, and the structure is as following: 

0 1 2 3 4 5 

Header only 

48 04 Chan Ident 0X d s 

 

Long version:  

This command appends the relative move params structure 

(MOT_SET_MOVERELPARAMS) to this message header. The command 

structure is 12 bytes, 6-byte header followed by 6-byte data packet as follows: 
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0 1 2 3 4 5 6 7 8 9 10 11 

Header Data 

48 04 06 00 d s Chan Ident Relative Distance 

In this structure “Relative Distance” is the distance to move. This is a 4-byte 

signed integer that specifies the relative distance in position encoder counts. 

After the relative move is finished, the controller transmits a message indicating 

the completion of the movement. This message, known as the "Move Completed" 

message, is sent as described below. 

2.8 MGMSG_MOT_MOVE_COMPLETED  

This command does not elicit an immediate response upon the initial message. 

However, once the relative or absolute move sequence is finished, the controller 

transmits a “move completed” message. The RX structure is in 20 bytes as follow: 

0 1 2 3 4 5 6 7 8 9 10 11 

Header Data 

64 04 0E 00 d s Chan Ident position 

 

12 13 14 15 16 17 18 19 

Data 

Velocity Motor Current Status Bits 

 

The position bytes indicate the measured position in encoder counts, which are 

controller units. However, the relationship between encoder counts and physical 

units, such as millimeters or degrees, varies depending on both the controller and 

the specific stage being used. The actual velocity is measured in controller units, 

which are specific to the motor and controller being used. 
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The motor current is measured in milliamperes (mA) and is represented by a 

signed 16-bit integer, ranging from -32768 to +32767. 

“Status Bits” is 32-bit variable providing status information. The command 

“0x00000200” indicates that the motor is performing a homing move and 

command “0x00000400” indicates that the motor has completed the homing 

move, the absolute position is known and therefore the position count is now 

valid. 

2.9 MGMSG_MOT_MOVE_ABSOLUTE 

This command is used to start an absolute move on the specified motor channel 

(using the absolute move position parameter above). As previously described in 

the “MOVE RELATIVE” command, there are two versions of this command: a 

shorter (6-byte header only) version and a longer (6-byte header plus 6 data bytes) 

version. When the first one is used, the absolute move position parameter used 

for the move will be the parameter sent previously by a 

MGMSG_MOT_SET_MOVEABSPARAMS command. If the longer version of 

the command is used, the absolute position is encoded in the data packet that 

follows the header.  

Short version:  

The short version has the TX structure in 6 bytes: 

0 1 2 3 4 5 

Header only 

53 04 Chan Ident 0X d s 

 

Long version:  

Another method of employing this command is by attaching the 

MOTABSMOVEPARAMS (absolute move parameters structure) to the message 

header. The command structure consists of a total of 12 bytes, with the initial 6 
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bytes representing the header, followed by a 6-byte data packet structured as 

follows: 

0 1 2 3 4 5 6 7 8 9 10 11 

Header Data 

53 04 06 00 d s Chan Ident Absolute Distance 

 

The Absolute Distance represents the distance to be moved and is expressed as a 

4-byte signed integer, indicating the absolute distance in position encoder counts. 
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Appendix C: all command codes of the communication protocol 

Command code selected DAC adjustable signals 

00000000 U$6 (AD5544) SIN0, SIN90 

00000001 U$12 (AD5544) SIN45, SIN135 

00000010 U$26 (AD5544) VOH0, VOH2 

00000011 U$28 (AD5544) VOH1, VOH3 

00000100 U$21 (AD5544) V_FREE, REF_INTENSITY 

00000101 U$7 (AD5544) 
SHIELD, VT_INTEN, 

VT_POLA 

Command codes for continuous readout of all ADCs without sending the 

readout data to the PC. 

Command codes Command 

10000111 Start of continuous readout 

00000111 Stop continuous readout 

Command codes for reading out various ADCs once and then sending the 

read-out data to the PC. The data is sent to the PC in the order in which the 

ADCs and the signals are arranged in the table (from left to right). 

Command codes selected ADCs 
Signals connected to the "V+" 

pins of the ADCs 

10000110 U$13, U$5 SIN0, SIN90 

01000110 U$15, U$14 SIN45, SIN135 

11000110 
U$13, U$5, U$15, 

U$14 
SIN0, SIN90, SIN45, SIN135 

00100110 U$17, U$16 VOH0, VOH2 

10100110 
U$13, U$5, U$17, 

U$16 
SIN0, SIN90, VOH0, VOH2 

01100110 
U$15, U$14, 

U$17, U$16 

SIN45, SIN135, VOH0, 

VOH2 
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11100110 

U$13, U$5, U$15, 

U$14, U$17, 

U$16 

SIN0, SIN90, SIN45, SIN135, 

VOH0, VOH2 

00010110 U$19, U$18 VOH1, VOH3 

10010110 
U$13, U$5, U$19, 

U$18 
SIN0, SIN90, VOH1, VOH3 

01010110 
U$15, U$14, 

U$19, U$18 

SIN45, SIN135, VOH1, 

VOH3 

11010110 

U$13, U$5, U$15, 

U$14, U$19, 

U$18 

SIN0, SIN90, SIN45, SIN135, 

VOH1, VOH3 

00110110 
U$17, U$16, 

U$19, U$18 
VOH0, VOH2, VOH1, VOH3 

10110110 

U$13, U$5, U$17, 

U$16, U$19, 

U$18 

SIN0, SIN90, VOH0, VOH2, 

VOH1, VOH3 

01110110 

U$15, U$14, 

U$17, U$16, 

U$19, U$18 

SIN45, SIN135, VOH0, 

VOH2, VOH1, VOH3 

11110110 

U$13, U$5, U$15, 

U$14, U$17, 

U$16, U$19, 

U$18 

SIN0, SIN90, SIN45, SIN135, 

VOH0, VOH2, VOH1, VOH3 
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