TY - RPRT U1 - Arbeitspapier A1 - Casajus, André A1 - Wiese, Harald T1 - Scarcity, competition, and value T2 - HHL Working paper N2 - We suggest a value for finite coalitional games with transferable utility that are enriched by non-negative weights for the players. In contrast to other weighted values, players stand for types of agents and weights are intended to represent the population sizes of these types. Therefore, weights do not only affect individual payoffs but also the joint payoff. Two principles guide the behavior of this value. Scarcity: The generation of worth is restricted by the scarcest type. Competition: Only scarce types are rewarded. We find that the types’ payoffs for this value coincide with the payoffs assigned by the Mertens value to their type populations in an associated infinite game. T3 - HHL-Arbeitspapier / HHL Working paper - 143 KW - TU game KW - Shapley value KW - Lovász extension KW - Strong monotonicity KW - Partnership KW - Vector measure game KW - Mertens value Y1 - 2015 SP - 14 S1 - 14 PB - HHL Leipzig Graduate School of Management CY - Leipzig ER -