Refine
Document Type
- Article (3)
- Working Paper (3)
- Conference Proceeding (1)
- Contribution to a Periodical (1)
Keywords
- Quantum information (1)
- Quibit (1)
- Rényi entropy (1)
- Signed probability (1)
- Theoretical physics (1)
- Uncertainty principle (1)
Institute
Has Fulltext
- no (8)
The states of the qubit, the basic unit of quantum information, are 2×2 positive semi-definite Hermitian matrices with trace 1. We contribute to the program to axiomatize quantum mechanics by characterizing these states in terms of an entropic uncertainty principle formulated on an eight-point phase space. We do this by employing Rényi entropy (a generalization of Shannon entropy) suitably defined for the signed phase-space probability distributions that arise in representing quantum states.
Is the world quantum? An active research line in quantum foundations is devoted to exploring what constraints can rule out the postquantum theories that are consistent with experimentally observed results. We explore this question in the context of epistemics, and ask whether agreement between observers can serve as a physical principle that must hold for any theory of the world. Aumann’s seminal Agreement Theorem states that two observers (of classical systems) cannot agree to disagree. We propose an extension of this theorem to no-signaling settings. In particular, we establish an Agreement Theorem for observers of quantum systems, while we construct examples of (postquantum) no-signaling boxes where observers can agree to disagree. The PR box is an extremal instance of this phenomenon. These results make it plausible that agreement between observers might be a physical principle, while they also establish links between the fields of epistemics and quantum information that seem worthy of further exploration.
We show how quantum entanglement may be able to improve the joint performance of a system of telescopes, cameras, or other sensors which are widely separated in space. The improvement is relative to any observation strategy that uses only classical coordinating devices. Potential application domains include space-based observatories and multi-frequency interferometry.
We study team decision problems where communication is not possible, but coordination among team members can be realized via signals in a shared eironment. We consider a variety of decision problems that differ in what team members know about one another’s actions and knowledge. For each type of decision problem, we iestigate how different assumptions on the available signals affect team performance. Specifically, we consider the cases of perfectly correlated, i.i.d., and exchangeable classical signals, as well as the case of quantum signals. We find that, whereas in perfect-recall trees (Kuhn [15, 1950], [16, 1953]) no type of signal improves performance, in imperfect-recall trees quantum signals may bring an improvement. Isbell [13, 1957] proved that in non-Kuhn trees, classical i.i.d. signals may improve performance. We show that further improvement may be possible by use of classical exchangeable or quantum signals. We include an example of the effect of quantum signals in the context of high-frequency trading.
The Heisenberg uncertainty principle is one of the most famous features of quantum mechanics. However, the non-determinism implied by the Heisenberg uncertainty principle --- together with other prominent aspects of quantum mechanics such as superposition, entanglement, and nonlocality --- poses deep puzzles about the underlying physical reality, even while these same features are at the heart of exciting developments such as quantum cryptography, algorithms, and computing. These puzzles might be resolved if the mathematical structure of quantum mechanics were built up from physically interpretable axioms, but it is not. We propose three physically-based axioms which together characterize the simplest quantum system, namely the qubit. Our starting point is the class of all no-signaling theories. Each such theory can be regarded as a family of empirical models, and we proceed to associate entropies, i.e., measures of information, with these models. To do this, we move to phase space and impose the condition that entropies are real-valued. This requirement, which we call the Information Reality Principle, arises because in order to represent all no-signaling theories (including quantum mechanics itself) in phase space, it is necessary to allow negative probabilities (Wigner [1932]). Our second and third principles take two important features of quantum mechanics and turn them into deliberately chosen physical axioms. One axiom is an Uncertainty Principle, stated in terms of entropy. The other axiom is an Unbiasedness Principle, which requires that whenever there is complete certainty about the outcome of a measurement in one of three mutually orthogonal directions, there must be maximal uncertainty about the outcomes in each of the two other directions.