Refine
Document Type
- Article (44)
- Conference Proceeding (2)
- Book (1)
- Part of a Book (1)
Language
- English (48)
Keywords
This paper treats the Piggyback Transportation Problem: A large vehicle moves successive batches of small vehicles from a depot to a single launching point. Here, the small vehicles depart toward assigned customers, supply shipments, and return to the depot. Once the large vehicle has returned and another batch of small vehicles has been loaded at the depot, the process repeats until all customers are serviced. With autonomous driving on the verge of practical application, this general setting occurs whenever small autonomous delivery vehicles with limited operating range, e.g., unmanned aerial vehicles (drones) or delivery robots, need to be brought in the proximity of the customers by a larger vehicle, e.g., a truck. We aim at the most elementary decision problem in this context, which is inspired by Amazon’s novel last-mile concept, the flying warehouse. According to this concept, drones are launched from a flying warehouse and – after their return to an earthbound depot – are resupplied to the flying warehouse by an air shuttle. We formulate the Piggyback Transportation Problem, investigate its computational complexity, and derive suited solution procedures. From a theoretical perspective, we prove different important structural problem properties. From a practical point of view, we explore the impact of the two main cost drivers, the capacity of the large vehicle and the fleet size of small vehicles, on service quality.
This special issue publishes contributions from the operations research (OR) community in the following areas and at the intersections of those areas, namely manufacturing and supply chain digitalization, resilience, and sustainability. The application areas of OR and analytics to digital, resilient, and sustainable manufacturing systems may contain descriptive and diagnostic analyses, predictive simulation and prescriptive optimization, real time control, and adaptive learning. Examples of OR and analytics applications include logistics and supply chain control with real-time data, inventory control and management using sensing data, dynamic resource allocation in Industry 4.0 customized assembly systems, improving forecasting models using big data, machine learning techniques for process control, network visibility and risk control, optimizing systems based on predictive information (e.g., predictive maintenance), combining optimization and machine learning algorithms, and supply chain risk analytics.
Constraint programming solvers are known to perform remarkably well for most scheduling problems. However, when comparing the performance of different available solvers, there is usually no clear winner over all relevant problem instances. This gives rise to the question of how to select a promising solver when knowing the concrete instance to be solved. In this article, we aim to provide first insights into this question for the flexible job shop scheduling problem. We investigate relative performance differences among five constraint programming solvers on problem instances taken from the literature as well as randomly generated problem instances. These solvers include commercial and non-commercial software and represent the state-of-the-art as identified in the relevant literature. We find that two solvers, the IBM ILOG CPLEX CP Optimizer and Google’s OR-Tools, outperform alternative solvers. These two solvers show complementary strengths regarding their ability to determine provably optimal solutions within practically reasonable time limits and their ability to quickly determine high quality feasible solutions across different test instances. Hence, we leverage the resulting performance complementarity by proposing algorithm selection approaches that predict the best solver for a given problem instance based on instance features or parameters. The approaches are based on two machine learning techniques, decision trees and deep neural networks, in various variants. In a computational study, we analyze the performance of the resulting algorithm selection models and show that our approaches outperform the use of a single solver and should thus be considered as a relevant tool by decision makers in practice.
A single machine scheduling problem with assignable job due dates to minimize total late work has recently been introduced by Mosheiov, Oron, and Shabtay (2021). The problem was proved NP-hard in the ordinary sense, and no solution algorithm was proposed. In this note, we present two pseudo-polynomial dynamic programming algorithms and an FPTAS for this problem. Besides, we introduce a new single machine scheduling problem to minimize maximum late work of jobs with assignable due dates. We develop an O(n log n) time algorithm for it, where is the number of jobs. An optimal solution value of this new problem is a lower bound for the optimal value of the total late work minimization problem, and it is used in the FPTAS.
The scale of freight forwarding to the hinterland becomes an issue from the perspective of both – transport policy and cost efficiency of service providers. This problem is sharply visible in areas where ports, depots, inland intermodal terminals, exporters and importers are located, and full and empty containers satisfying demand and supply are frequently distributed creating a lot of traffic. Therefore solutions meeting the challenges of sustainable transport, responding to climate change and regulation of CO2 emissions are in need. In this paper, a variant of a Mixed Fleet Heterogeneous Dial-a-Ride Problem is proposed for optimal routing of trucks carrying full and empty 20-foot and 40-foot containers, with multiple pick-ups and deliveries. Transportation is performed by alternatively fueled vehicles (AFVs) for environmental reasons which causes a constraint of a limited driving range and a need of refueling. The main objective is minimising the total distance subject to matching the empty container demand and supply, necessary refueling of the trucks, and service time windows.
This paper addresses the order- and rack-sequencing problem at a single picking station in the context of robotic mobile fulfillment systems, a warehouse technology typically applied in large distribution centers. Following the parts-to-picker concept, items are stored on movable racks that are lifted and transported by automated guided vehicles from the storage area to picking stations for order-processing. The order-picking process involves two linked decisions: How to sequence the processing of orders and how to sequence the rack visits to supply the picking station with the requested items. We present a novel mixed-integer linear programming formulation achieving stronger linear programming bounds than a previous formulation. Including preprocessing techniques it quickly solves instances of medium-size to proven optimality for the first time in literature. For large real-world instances, we provide a three-stage heuristic solution procedure suitable in a dynamic environment, while providing competitive solutions within a short run time. Computational experiments on a broad set of benchmark instances and a comparative study with approaches from literature verify our results.
Braverman et al. [Math. Oper. Res. 41(1), (2016), pp. 352–376], introduce the problem Provision-after-Wait which is to find a stable (ey free) assignment of n patients to m hospitals, and their waiting times before admission, such that the social welfare is maximized, subject to a limited budget. Chan et al. [ACM Trans. Econ. Comput. 5(2), (2017), Article 12, pp. 12:1–12:36] focus on a natural case of d-ordered preferences, in which patients are ordered according to the differences of their values between consecutive hospitals. For this case, they provide a sophisticated proof of ordinary NP-hardness, reduce it to the problem called Ordered Knapsack, and develop a fully polynomial time approximation scheme for Ordered Knapsack. We present a simple proof that Ordered Knapsack is NP-hard, which implies NP-hardness of a more restrictive case of the original problem, and present an alternative fully polynomial time approximation scheme with a reduced run time by a quadratic factor of n, for a fixed m. A similar algorithm is developed to find a solution for which the social welfare is as high as for the optimal solution of Ordered Knapsack, and the budget limit can be exceeded by at most 1-ε times. We also present polynomial algorithms for the cases of Ordered Knapsack, in which the number of distinct input parameters is fixed.
In this paper we present a novel approach to the dynamic pricing problem for hotel businesses. It includes disaggregation of the demand into several categories, forecasting, elastic demand simulation, and a mathematical programming model with concave quadratic objective function and linear constraints for dynamic price optimization. The approach is computationally efficient and easy to implement. In computer experiments with a hotel data set, the hotel revenue is increased by about 6% on average in comparison with the actual revenue gained in a past period, where the fixed price policy was employed, subject to an assumption that the demand can deviate from the suggested elastic model. The approach and the developed software can be a useful tool for small hotels recovering from the economic consequences of the COVID-19 pandemic.
The intensity of local truck container transport results from the ubiquitous development of container shipping. Optimal routing of container trucks contributes to cost savings of the service provider but also the reduction of traffic and detrimental emissions. In this paper, a variant of a Mixed Fleet Heterogeneous Dial-a-Ride Problem is proposed for a container truck routing problem. Our aim is an optimal routing of trucks carrying full and empty 20-foot and 40-foot containers, with multiple pick-ups and deliveries. Transportation is performed by alternatively fuelled vehicles (AFVs) for environmental reasons. The AFVs have a limited driving range and are allowed to refuel in any alternative fuel station. The main objective is minimising the total distance subject to matching the empty container demand and supply, necessary refuelling of the trucks, and service time windows.