Refine
Document Type
- Article (3)
Language
- English (3)
Keywords
- Approximation algorithm (1)
- Fixed interval scheduling (1)
- Interval graphs (1)
- Outsourcing (1)
- Parallel machines (1)
- Scheduling logistics (1)
- Subcontracting (1)
- Work sharing (1)
This paper treats the Piggyback Transportation Problem: A large vehicle moves successive batches of small vehicles from a depot to a single launching point. Here, the small vehicles depart toward assigned customers, supply shipments, and return to the depot. Once the large vehicle has returned and another batch of small vehicles has been loaded at the depot, the process repeats until all customers are serviced. With autonomous driving on the verge of practical application, this general setting occurs whenever small autonomous delivery vehicles with limited operating range, e.g., unmanned aerial vehicles (drones) or delivery robots, need to be brought in the proximity of the customers by a larger vehicle, e.g., a truck. We aim at the most elementary decision problem in this context, which is inspired by Amazon’s novel last-mile concept, the flying warehouse. According to this concept, drones are launched from a flying warehouse and – after their return to an earthbound depot – are resupplied to the flying warehouse by an air shuttle. We formulate the Piggyback Transportation Problem, investigate its computational complexity, and derive suited solution procedures. From a theoretical perspective, we prove different important structural problem properties. From a practical point of view, we explore the impact of the two main cost drivers, the capacity of the large vehicle and the fleet size of small vehicles, on service quality.
We study a problem of scheduling n jobs on machines of two types: in-house machines and third-party machines. Scheduling on in-house machines incurs no additional costs, while using third-party machines implies costs depending on their number and the time of usage. Each job has a fixed time interval for being processed which can be divided and allocated among several machines, as long as there is only one machine processing the job at any time. No machine can process more than one job at a time. Jobs can be rejected, and they are of different importance that is reflected in the weight of each job. The objective is to find a subset of the jobs and the number of third-party machines for any period of time so that the accepted jobs can be feasibly scheduled, the total weight of the accepted jobs is maximized, and the total machine usage costs does not exceed a given upper bound. We also study a similar problem in which the objective is to maximize the total time at which at least one job is processed. Both problems are encountered in situations in which certain activities with given start and completion times have to be serviced by human operators. Examples are air traffic control and the monitoring safe vehicle unloading. Other examples are the employment of subcontractors in agriculture, construction or transportation. We will present NP-hardness proofs, polynomial and pseudo-polynomial optimal algorithms and an approximation algorithm for these problems and their special cases. These problems admit graph-theoretical interpretations associated with finding independent sets and a proper vertex coloring in interval graphs.
One of the most known results in the machine scheduling is Lawler’s algorithm to minimize the maximum cost of jobs processed by a single machine subject to precedence constraints. We consider an uncertain version of the same min-max cost scheduling problem. The cost function of each job depends on the job completion time and on an additional generalized numerical parameter, which may be a tuple of parameters. For each job, both, its processing time and the additional parameter are uncertain, only intervals of possible values of these parameters are known. We analyse certain classes of cost functions and develop polynomial algorithms which construct min-max regret solutions. The considered problems cover the most general range of studied cases of interval uncertainty. In the only two papers that present algorithms for minimizing the maximum regret for the problem with uncertain job processing times, the algorithms are based on extremal scenarios, where some uncertain parameters take their maximum values, while all others take their minimum possible values. We show that it is impossible to always limit the search to extremal scenarios. Our approach is based on new ideas different from those underlying previous work. Finally, we show that our approach outperforms all known results for constructing min-max regret solutions for the min-max cost scheduling problem under uncertainty of job processing times.