Refine
Document Type
- Article (4)
Language
- English (4)
Keywords
- Green vehicle routing problem (2)
- Heterogeneous dial-a-ride problem (2)
- Lagrange relaxation (2)
- Mixed-integer programming (2)
- Empty container transportation (1)
- Full and empty container transportation (1)
- NP-completeness (1)
- asymmetric travelling salesman problem (1)
- container transhipment (1)
- non-approximability (1)
Has Fulltext
- no (4)
The scale of freight forwarding to the hinterland becomes an issue from the perspective of both – transport policy and cost efficiency of service providers. This problem is sharply visible in areas where ports, depots, inland intermodal terminals, exporters and importers are located, and full and empty containers satisfying demand and supply are frequently distributed creating a lot of traffic. Therefore solutions meeting the challenges of sustainable transport, responding to climate change and regulation of CO2 emissions are in need. In this paper, a variant of a Mixed Fleet Heterogeneous Dial-a-Ride Problem is proposed for optimal routing of trucks carrying full and empty 20-foot and 40-foot containers, with multiple pick-ups and deliveries. Transportation is performed by alternatively fueled vehicles (AFVs) for environmental reasons which causes a constraint of a limited driving range and a need of refueling. The main objective is minimising the total distance subject to matching the empty container demand and supply, necessary refueling of the trucks, and service time windows.
The intensity of local truck container transport results from the ubiquitous development of container shipping. Optimal routing of container trucks contributes to cost savings of the service provider but also the reduction of traffic and detrimental emissions. In this paper, a variant of a Mixed Fleet Heterogeneous Dial-a-Ride Problem is proposed for a container truck routing problem. Our aim is an optimal routing of trucks carrying full and empty 20-foot and 40-foot containers, with multiple pick-ups and deliveries. Transportation is performed by alternatively fuelled vehicles (AFVs) for environmental reasons. The AFVs have a limited driving range and are allowed to refuel in any alternative fuel station. The main objective is minimising the total distance subject to matching the empty container demand and supply, necessary refuelling of the trucks, and service time windows.
The makespan of operations at container terminals is crucial for the lead time of cargo and consequently the reduction of transportation costs. Therefore, an efficient transhipment and short storage of containers are demanded. Our paper refers to the consolidation process of trains in a container transhipment terminal as well as to the intermediate storage of containers in seaports in order to accelerate the loading and unloading of the vessels. It can also be encountered in automated storage/retrieval systems. Each of these (container) storage and retrieval moves corresponds to a crane operation, carrying a load from its pickup to its drop-off position. The problem is to find a permutation of the loaded crane moves that minimises the total empty crane travel time, which is the sum of times the crane needs to get from the last drop-off point of a load to the next pickup point of a load. We address the problem as an extension of an asymmetric travelling salesman problem (ATSP), assuming that n ordered pairs of points in the two-dimensional Euclidean space need to be traversed. Each point corresponds to a crane operation carrying a load from its pickup to its drop-off position. Despite that the problem seems to be easier than the ATSP, because a simple constant factor approximation exists, which was for a long time an open question for the ATSP, we are the first to prove that there is no polynomial-time approximation algorithm with an approximation guarantee less than 1+0.23/n unless P=NP.
Container transportation has become an important part of global transportation and it may gain a new potential in the light of the Chinese One Belt One Road (OBOR) initiative, known in Europe also as the New Silk Road. It iolves development of transport corridors – rail and maritime, linking China with Europe and it can be anticipated that its development will cause considerable shifts in container transportation from a sea into a rail (intermodal) route. In the light of substantial trade imbalance between Europe and China the problem of empty container repositioning gains specific importance. The aim of this study is the analysis of models and a variety of solutions to empty container repositioning problems through the prism of Eurasian intermodal transportation.