Refine
Year of publication
Document Type
- Article (232)
- Other (137)
- Conference Proceeding (85)
- Contribution to a Periodical (35)
- Part of a Book (26)
- Book (17)
- Doctoral Thesis (9)
- Part of Periodical (6)
- Report (6)
- Preprint (3)
Keywords
- Food Science (9)
- Biochemistry (8)
- Microbiology (8)
- General Medicine (5)
- Plant Science (5)
- Molecular Biology (4)
- Organic Chemistry (4)
- Simulation (4)
- Diskrete Mathematik (3)
- Extended Reality (3)
Institute
An innovative nanoscale surface modification approach for the development of hydrophobic surfaces is outlined in this book chapter. The technology, namely, the chemical fatty acid grafting, provides a fast, highly material efficient, nanoscale, and sustainable technique to hydrophobize substrates that obtain functional groups on their surfaces. In this chapter, the chemical process, as well as the influencing grafting parameters, are outlined and discussed in detail. The fatty acid grafting efficiency can be confirmed by the water contact angle, water repellence, solubility, or water vapor transmission rate (WVTR), which are represented based on the literature about different substrates such as paper or polyvinyl alcohol (PVA) coatings or films. Different processing techniques will be introduced, and their respective advantages and challenges, as well as upscaling options and requirements will be described. Current results obtained from an EU project comparing two grafting methods point out the challenges and potentials of possible upscaling of the technique. In addition, industrial fields of application for fatty acid grafting will be presented mainly for packaging and textile applications. Further emphasis is given to challenges in upscaling, sustainability aspects, and various future scenarios, as well as aspects regarding occupational safety and legal aspects related to the chemical fatty acid grafting technique.
Ansätze für nachhaltigere Reinräume - Für einen verkleinerten ökologischen Fußabdruck von morgen
(2025)
Aufgrund des hohen Energieverbrauchs und des Einsatzes zahlreicher Single-Use-Materialien rückt das Thema Nachhaltigkeit in der Reinraumtechnik zunehmend in den Fokus. Diese Entwicklung wird auch durch politische Vorgaben bestärkt. Unter Berücksichtigung der Balance zwischen einer Reduktion des CO2-Fußabdrucks und der Wahrung strenger Reinheitsstandards ergeben sich vielversprechende Lösungsansätze insbesondere durch die Steigerung der Energieeffizienz im Betrieb und den Einsatz nachhaltiger Verbrauchsmaterialien.
The EU-sponsored ATHENA project explores innovative training approaches with the objective of enhancing cyber resilience in the
critical infrastructure in the water sector.
This article investigates the potential misuse of large language models (LLM) for low-resource, highly personalised social engineering attacks. The study explores how ChatGPT can infer personality traits during natural conversations by leveraging publicly available personal information, such as social media data, as an entry point. Utilising the social engineering personality framework (SEPF), the research endeavours to optimise attack vectors based on the Big Five personality traits, with the objective of enhancing the persuasiveness of social engineering strategies. The approach is divided into four phases: verifying conversational capabilities, conducting personality analyses, applying the SEPF for attack optimisation, and evaluating the persuasiveness of personalised attacks. The present paper offers a proof-of-principle for the initial phase, demonstrating ChatGPT’s capacity to engage in natural conversations while conducting personality analyses in a discreet manner. The findings indicate that while ChatGPT exhibits the capacity to simulate human-like interactions, limitations in conversational variance and the reliability of personality assessment were observed. The study identifies challenges such as generalisations, lack of score differentiation, and confirmation bias, and proposes refinements like increasing interaction depth, adjusting scoring scales, and using tailored personas. Subsequent research will investigate enhanced personality inference techniques, personalisation of attack vectors, and their impact on susceptibility to social engineering attacks.
Die rasante Entwicklung von Künstlicher Intelligenz (KI) eröffnet zahlreiche Möglichkeiten und Vorteile in verschiedenen Bereichen. Gleichzeitig stellt sie jedoch erhebliche Herausforderungen im Bereich des Datenschutzes dar. Dieser Beitrag beleuchtet das Spannungsfeld zwischen KI und Datenschutz, indem er die wesentlichen rechtlichen Rahmenbedingungen, Arten von KI-Systemen und die damit verbundenen Pflichten und Verantwortlichkeiten erörtert.
Mit der Einführung der Datenschutz-Grundverordnung (DS-GVO) im Mai 2018 wurde der Schutz personenbezogener Daten in Europa auf eine neue Grundlage gestellt. Parallel dazu hat sich die Nutzung von KI-Systemen weiterentwickelt, was neue Herausforderungen für den Datenschutz mit sich bringt. Die Hambacher Erklärung (2019) und die darauf basierenden Positionspapiere sowie die Orientierungshilfe der DSK zu KI (2024) haben diese Entwicklungen weiter geprägt. Die KI-Verordnung (KI-VO) der EU, die im Mai 2024 in Kraft trat, setzt nun neue Maßstäbe für den Umgang mit KI-Systemen.
Although laboratory automation has been used successfully in some areas for decades, the general knowledge about laboratory automation and its user-friendliness still leaves a lot to be desired in some areas of application. In my presentation, I would like to introduce our open-source and easily adaptable voice-user-interface system “Rainbow“ for laboratory environments. “Rainbow“ achieves a speech recognition accuracy of at least 98.6%. On the other hand, I would like to present our decision-making aid on how interested laboratories can introduce laboratory automation systems and thereby are able to avoid common mistakes.Finally, I would like to talk about how we are training the next generations of laboratory automation specialists at our university.
•Neue Wege & Anwendungsmöglichkeiten durch BioShieldProcess:
•Entwicklung und Pilotierung neuer Verfahren für nachhaltige Verpackungen.
•Anwendung in flexiblen Verpackungen, Beuteln und Beschichtungen.
•Fokus auf kreislauffähige Verpackungslösungen mit minimalem ökologischen Fußabdruck.
•Nachhaltige Verpackungslösungen erfordern interdisziplinäre Ansätze, innovative Materialien und optimierte Herstellungsprozesse.