@phdthesis{Jochem2017, author = {Aljosha-Rakim Jochem}, title = {Reference particles for field-flow fractionation}, doi = {10.22028/D291-26857}, url = {https://nbn-resolving.org/urn:nbn:de:bsz:291:415-5115}, pages = {XIV, 158}, year = {2017}, abstract = {Nanoparticles with properties that deviate from the bulk are the basis of many innovations in nanotechnology. Analytical techniques for the reliable characterization of nanoparticles are gaining importance as nanoparticle fabrication and their use increase in research and industry. Field-flow fractionation is capable of analyzing particulate samples from different materials that have complex size distributions. Good analytical performances have been reported for field-flow fractionation of inorganic nanoparticles, but large particle losses have so far hampered its application. This thesis studies reference particles to identify and overcome particle loss mechanisms during field-flow fractionation. Silica and gold nanoparticles were synthesized as model particle cores, and their size was systematically varied. Different labeling strategies were tested to make the particles easy to identify. The particles surfaces were modified to tune colloidal behavior and adsorption properties. Losses of different reference particles during field-flow fractionation were then studied and correlated with the particles’ structure and colloidal stability. Particle losses due to destabilization of particles with loosely attached ligands or polymer-mediated bridging adsorption on the separation membrane were identified. Reference particles were tested in a complex matrix.}, language = {en} }