Supplementary Material

Toll-like receptor 2 release by macrophages: an anti-inflammatory program induced by glucocorticoids and lipopolysaccharide

Jessica Hoppstädter ${ }^{1 *}$, Anna Dembek ${ }^{1}$, Rebecca Linnenberger ${ }^{1}$, Charlotte Dahlem ${ }^{1}$, Ahmad Barghash ${ }^{2}$, Claudia Fecher-Trost ${ }^{3}$, Gregor Fuhrmann ${ }^{4}$, Marcus Koch ${ }^{5}$, Annette Kraegeloh ${ }^{5}$, Hanno Huwer ${ }^{6}$, Alexandra K. Kiemer ${ }^{*}$ *
${ }^{1}$ Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
${ }^{2}$ Department of Computer Science, German Jordanian University, Amman, Jordan
${ }^{3}$ Department of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg/Saar, Germany
${ }^{4}$ Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany
${ }^{5}$ INM - Leibniz Institute for New Materials, Saarbrücken, Germany
${ }^{6}$ Department of Cardiothoracic Surgery, Völklingen Heart Centre, Völklingen, Germany
*Corresponding authors:
j.hoppstaedter@mx.uni-saarland.de, pharm.bio.kiemer@mx.uni-saarland.de

Supplementary Figures

Supplementary Figure 1. Treatment schemes and serum deprivation do not impair cell viability. A, B: Caspase-3-like activity assay. Cells were treated with the vehicle control (0.1% DMSO, Co), LPS ($100 \mathrm{ng} / \mathrm{mL}$), Dex ($1 \mu \mathrm{M}$), or LPS + Dex for 3 d in serum-free medium. Treatment with $10 \mu \mathrm{M}$ doxorubicin (Doxo) for 24 h served as a positive control. An increase in apoptosis-asscociated caspase-3-like activity was neither detected in THP-1 cells (A) nor in AMs (B) ($n=3$). C: Zombie yellow viability staining. Differentiated THP-1 cells were cultured in in serum-containing (+ FCS) or serumfree (- FCS) medium for 3 d . Cells incubated at $60^{\circ} \mathrm{C}$ for 1 h (heat) served as a positive control. Cell viability was not affected by serum-free medium ($\mathrm{n}=2$, triplicates).

Supplementary Figure 2. Gradient for nano-liquid chromatography. Time points for changes in buffer B concentrations are given in the table.

Supplementary Figure 3: ADAM10 and ADAM17 expression in AMs. AMs were treated with vehicle (Co) or LPS (100 $\mathrm{ng} / \mathrm{ml})+\operatorname{Dex}(1 \mu \mathrm{M})$ for 24 h. ADAM10 and ADAM17 expression was determined by qPCR, and values were normalized to the housekeeping gene $A C T B$. The means of 3 experiments performed in triplicate + SEM are shown. $* * *$ p <0.001. pvalues were generated by ANOVA with Bonferroni's post-hoc test.

Supplementary Figure 4: Correlation between EV concentration and protein amount. EVs were isolated from THP-1 macrophages treated with the vehicle control (0.1% DMSO, Co $)$, LPS $(100 \mathrm{ng} / \mathrm{mL})$, Dex $(1 \mu \mathrm{M})$ or LPS + Dex for 3 d in serum-free medium. Values for seven individual isolations are given. $\square=\mathrm{Co}, \bullet=\mathrm{LPS}, \Delta=\operatorname{Dex}$ and $\stackrel{=}{ }$ LPS + Dex.

B

EtOH	+	-	-	-	-	-	-	-
RU486	-	+	-	+	-	+	-	+
Dex	-	-	+	+	-	-	+	+
LPS	-	-	-	-	+	+	+	+

Supplementary Figure 5: Influence of dexamethasone and LPS on DUSP1 expression and p 38 MAPK activation. AMs were preincubated with the GR inhibitor RU486 $(10 \mu \mathrm{M})$ or solvent control $(0.1 \% \mathrm{EtOH})$ and treated with LPS (100 $\mathrm{ng} / \mathrm{mL})$, Dex $(1 \mu \mathrm{M})$, or both for $24 \mathrm{~h} . \mathrm{A}: D U S P 1$ expression was measured by qPCR. B, C: Phospho-p38 and total p38 were analyzed by Western Blot. Tubulin served as a loading control. Data from at least three independent experiments performed in duplicate with cells from different donors are presented as means + SEM and A, C: *p <0.05, **p <0.01. ***p < 0.001 . C: \#p < 0.05 vs. vehicle-treated Co. p-values were generated by ANOVA with Bonferroni's post-hoc test.

Supplementary Tables

Supplementary Table 1: PCR conditions.

Gene	$\begin{aligned} & \text { Sequence } \\ & \left(5^{\prime} \rightarrow 3^{\prime}\right) \text { forward } \\ & \text { primer } \end{aligned}$	Sequence $\left(5^{\prime} \rightarrow 3^{\prime}\right)$ reverse primer	Probe sequence (5'FAM $\rightarrow \mathbf{3}^{\prime} \mathrm{BHQ}$)	$\begin{aligned} & \text { Probe } \\ & {[\mathrm{nM}]} \end{aligned}$	$\underset{[\mathrm{mM}]}{\mathrm{MgCl}_{2}}$	Annealing $\left[{ }^{\circ} \mathrm{C}\right]$
ACTB	TGCGTGACA TTAAGGAGA AG	GTCAGGCAG CTCGTAGCT CT	CACGGCTGCTTC CAGCTCCTC	60	4	60
ADAM10	TGCCCAGAT ATCCAGTCA TGTT	TCACCATGA AACTGATGT TACGG	no probe	N/A	N/A	60
ADAM17	AGAGAACCA CCTGAAGAG CTTG	TCCCCTCTG CCCATGTAT CT	no probe	N/A	N/A	60
CCL2	TTGATGTTT taAGTTTAT CTTTCATGG	CAGGGGTAG AACTGTGGT TCA	no probe	N/A	N/A	60
CXCL10	GAGCCTACA GCAGAGGAA CC	AAGGCAGCA AATCAGAAT CG	TCCAGTCTCAGC ACCATGAATCAAA	60	4	60
DUSPI	CAGCTGCTG CAGTTTGAG TC	AGGTAGCTC AGCGCACTG TT	no probe	N/A	N/A	64
FPR2	GCATCCTCA GGAAAATGC ACC	GCATCCTCA GGAAAATGC ACC	no probe	N/A	N/A	60
ICAM	GAAGTGGCC CTCCATAGA CA	TCAAGGGTT GGGGTCAGT AG	no probe	N/A	N/A	60
IL10	CAACAGAAG CTTCCATTC CA	AGCAGTTAG GAAGCCCCA AG	AGCCTGACCACG CTTTCTAGCTGTTGA G	100	4	60

$\boldsymbol{M M P 9}$	CTTTGAGTC CGGTGGACG AT	TCGCCAGTA CTTCCCATC CT	no probe	N/A	N/A	60
$\boldsymbol{S E L E}$	AGCCCAGAG CCTTCAGTG TA	CCCTGCATG TCACAGCTT TAA	no probe			

Supplementary Table 2: Antibodies and TLR2 ligands for flow cytometry.

antibody / ligand | amount |
| :---: |
| per sample |\quad order no. supplier

FITC anti-human CD9, Mouse IgG1, kappa [HI9a 25]	$0.5 \mu \mathrm{~g}$	BLD-312103	Biozol
FITC anti-human CD63, Mouse IgG1, [H5C6]	$1 \mu \mathrm{~g}$	BLD-353005	Biozol
FITC Mouse IgG1, kappa Isotype Ctrl (FC) [MOPC-21]	$1 \mu \mathrm{~g}$	BLD-400109	Biozol
APC anti-human TLR2 (CD282) Mouse IgG2a [TL2.1]	$2 \mu \mathrm{~g}$	$17-9922-41$	ThermoFisher
APC Mouse IgG2a kappa Isotype Control [eBM2a]	$2 \mu \mathrm{~g}$	$17-4724-81$	ThermoFisher
Rhodamine-conjugated Pam3CSK4	$0.5 \mu \mathrm{~g}$	tlrl-rpms	Invivogen

