Volltext-Downloads (blau) und Frontdoor-Views (grau)

Strategy for optimizing experimental settings for studying low atomic number colloidal assemblies using liquid phase scanning transmission electron microscopy

  • Observing processes of nanoscale materials of low atomic number is possible using liquid phase electron microscopy (LP-EM). However, the achievable spatial resolution (d) is limited by radiation damage. Here, we examine a strategy for optimizing LP-EM experiments based on an analytical model and experimental measurements, and develop a method for quantifying image quality at ultra low electron dose De using scanning transmission electron microscopy (STEM). As experimental test case we study the formation of a colloidal binary system containing 30-nm diameter SiO2 nanoparticles (SiONPs), and 100-nm diameter polystyrene microspheres (PMs). We show that annular dark field (DF) STEM is preferred over bright field (BF) STEM for practical reasons. Precise knowledge of the material's density is crucial for the calculations in order to match experimental data. To calculate the detectability of nano-objects in an image, the Rose criterion for single pixels is expanded to a model of the signal to noise ratio obtained for multiple pixels spanning the image of an object. Using optimized settings, it is possible to visualize the radiation-sensitive, hierarchical low-Z binary structures, and identify both components.

Download full text files

Export metadata

Additional Services

Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Document Type:Article
Author:Peter Kunnas, Mohammad-Amin MoradiORCiD, Nico SommerdijkORCiD, Niels de JongeORCiD
URN:urn:nbn:de:bsz:291:415-1092
DOI:https://doi.org/10.1016/j.ultramic.2022.113596s
Parent Title (English):Ultramicroscopy
Volume:240
First Page:113596
Language:English
Year of first Publication:2021
Release Date:2022/08/12
Impact:02.994 (2021)
Funding Information:Marie Sklodowska-Curie ITN project MULTIMAT;
Scientific Units:Innovative Electron Microscopy
DDC classes:500 Naturwissenschaften und Mathematik / 530 Physik
Open Access:Open Access
Signature:INM 2022/071
Licence (German):License LogoCreative Commons - CC BY-NC-ND - Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International