Volltext-Downloads (blau) und Frontdoor-Views (grau)

Adhesion modulation In bio-inspired micropatterned adhesives by electrical fields

  • With steps towards Industry 4.0, it becomes imperative to the development of next-generation industrial assembly lines, to be able to modulate adhesion dynamically for handling complex and diverse substrates. The inspiration for the design and functionality of such adhesive pads comes from gecko’s remarkable ability to traverse rough and smooth topographies with great ease and agility. The emphasis in this thesis was to equip artificial micropatterned adhesives with such functionalities of tunability and devise an on-demand release mechanism. The project evaluates the potential of electric fields in this direction. The first part of this work focusses on integrating electric fields with polymeric micropatterns and studying the synergistic effect of Van der Waals and electrostatic forces. An in-house electroadhesion set up was built to measure the pull-off forces with and without electric fields. As a function of the applied voltage, adhesion forces can be tuned. The second part of the work demonstrates a novel route that exploits the in-plane actuation of the dielectric elastomeric actuators integrated with microstructure to induce peeling in them. Voltage-dependent actuation has been harnessed to generate the requisite peel force to detach the micropatterns. Overall, the findings of this thesis combine disciplines of electroadhesion, electroactuation, and reversible dry adhesives to gain dynamic control over adhesion.
  • Im Einklang mit dem Fortschreiten in Richtung Industrie 4.0, wird es auch für die Entwicklung von industriellen Montagelinien der nächsten Generation unerlässlich sein, die Handhabung komplexer und unterschiedlicher Objekte zu flexibilisieren. Bioinspirierte Haftpads nach dem Vorbild des Gecko könnten zukünftig hierzu wesentlich beitragen. Der Schwerpunkt dieser Arbeit bestand darin, künstliche mikrostrukturierte Haftpads mit einem elektrisch schaltbaren Adhäsions- und Ablösemechanismus zu funktionalisieren, um die Grundlage für einen schnell schaltbaren, intelligenten Greifer zu schaffen. Der erste Teil dieser Arbeit konzentriert sich auf die Kombination elektrischer Felder mit elastomeren Mikrostrukturen und die Untersuchung der synergistischen Wirkung von Van der Waals- und elektrostatischen Kräften. Zur Messung der Adhäsion wurde ein individueller Aufbau realisiert und mit diesem die Feldstärkeabhängigkeit der Haftkräfte nachgewiesen. Der zweite Teil der Arbeit demonstriert einen neuartigen Ablösemechanismus unter Ausnutzung der lateralen Bewegung dielektrischer elastomerer Aktuatoren, um so ein Abschälen der Haftpads vom Substrat zu induzieren. Durch Variation der elektrischen Spannung wurde untersucht, wie sich diese auf die Ablösegeschwindigkeit der Haftpads auswirkt. Insgesamt kombinieren die Ergebnisse dieser Arbeit die Disziplinen Elektroadhäsion, Elektroaktuation und reversible trockene Klebstoffe, um so eine dynamische Kontrolle über die Adhäsion zu erhalten.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Document Type:Doctoral Thesis or Habilitation
Author:Vaishali ChopraORCiD
URN:urn:nbn:de:bsz:291:415-2032
DOI:https://doi.org/10.22028/D291-32717
Pagenumber:XV, 145 S.
Place of publication:Saarbrücken
Faculty:NT - Naturwissenschaftlich-Technische Fakultät / Materialwissenschaft und Werkstofftechnik
Referee:Eduard ArztORCiD
Language:English
Year of first Publication:2020
Publishing Institution:Universität des Saarlandes
Date of final exam:2020/09/10
Contributing Corporation:INM - Leibniz-Institut für Neue Materialien
Release Date:2022/11/03
Groups:Funktionelle Mikrostrukturen
Researchfields:Grenzflächenmaterialien
DDC classes:500 Naturwissenschaften und Mathematik / 530 Physik
600 Technik, Medizin, angewandte Wissenschaften / 620 Ingenieurwissenschaften und Maschinenbau
Open Access:Open Access
Signature:Diss 2020 Chopra
Licence (German):License LogoUrheberrechtlich geschützt