Volltext-Downloads (blau) und Frontdoor-Views (grau)

Cell Adhesion on Dynamic Supramolecular Surfaces Probed by Fluid Force Microscopy-Based Single-Cell Force Spectroscopy

  • Biomimetic and stimuli-responsive cell-material interfaces are actively being developed to study and control various cell-dynamics phenomena. Since cells naturally reside in the highly dynamic and complex environment of the extracellular matrix, attempts are being made to replicate these conditions in synthetic biomaterials. Supramolecular chemistry, dealing with noncovalent interactions, has recently provided possibilities to incorporate such dynamicity and responsiveness in various types of architectures. Using a cucurbit[8]uril-based host–guest system, we have successfully established a dynamic and electrochemically responsive interface for the display of the integrin-specific ligand, Arg-Gly-Asp (RGD), to promote cell adhesion. Due to the weak nature of the noncovalent forces by which the components at the interface are held together, we expected that cell adhesion would also be weaker in comparison to traditional interfaces where ligands are usually immobilized by covalent linkages. To assess the stability and limitations of our noncovalent interfaces, we performed single-cell force spectroscopy studies using fluid force microscopy. This technique enabled us to measure rupture forces of multiple cells that were allowed to adhere for several hours on individual substrates. We found that the rupture forces of cells adhered to both the noncovalent and covalent interfaces were nearly identical for up to several hours. We have analyzed and elucidated the reasons behind this result as a combination of factors including the weak rupture force between linear Arg-Gly-Asp and integrin, high surface density of the ligand, and increase in effective concentration of the supramolecular components under spread cells. These characteristics enable the construction of highly dynamic biointerfaces without compromising cell-adhesive properties.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar


Document Type:Article
Author:Shrikrishnan SankaranORCiD, Leena Jaatinen, Jenny Brinkmann, Tomaso Zambelli, Janos Vörös, Pascal JonkheijmORCiD
Parent Title (English):ACS Nano
First Page:3867
Last Page:3874
Publisher:American Chemical Society
Year of first Publication:2017
Release Date:2022/11/18
Impact:13.709 (2017)
Groups:Dynamische Biomaterialien
Open Access:Open Access
Signature:INM 2017/109
Licence (German):License LogoCreative Commons - CC BY-NC-ND - Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International