Refine
Year of publication
Language
- English (25)
Has Fulltext
- yes (25)
Is part of the Bibliography
- yes (25)
Keywords
- silica nanoparticles (3)
- cytotoxicity (2)
- inflammatory bowel disease (2)
- intestinal barrier in vitro (2)
- intestinal microvasculature (2)
- sICAM-1 (2)
- safe-by-design (2)
- Caco-2 (1)
- Caco-2, ISO-HAS-1 (1)
- Calu-3 cells (1)
Groups
Research Field
- Biogrenzflächen (24)
- Servicebereich (4)
- Grenzflächenmaterialien (1)
It has been widely recognized that nanosafety studies are limited in reproducibility, caused by missing or inadequate information and data gaps. Reliable and comprehensive studies should be performed supported by standards or guidelines, which need to be harmonized and usable for the multidisciplinary field of nanosafety research. The previously described minimal information table (MIT), based on existing standards or guidelines, represents one approach towards harmonization. Here, we demonstrate the applicability and advantages of the MIT by a round-robin test. Its modular structure enables describing individual studies comprehensively by a combination of various relevant aspects. Three laboratories conducted a WST-1 cell viability assay using A549 cells to analyze the effects of the reference nanomaterials NM101 and NM110 according to predefined (S)OPs. The MIT contains relevant and defined descriptive information and quality criteria and thus supported the implementation of the round-robin test from planning, investigation to analysis and data interpretation. As a result, we could identify sources of variability and justify deviating results attributed to differences in specific procedures. Consequently, the use of the MIT contributes to the acquisition of reliable and comprehensive datasets and therefore improves the significance and reusability of nanosafety studies.
Assessing the safety of engineered nanomaterials (ENMs) is an interdisciplinary and complex process producing huge amounts of information and data. To make such data and metadata reusable for researchers, manufacturers, and regulatory authorities, there is an urgent need to record and provide this information in a structured, harmonized, and digitized way. RESULTS: This study aimed to identify appropriate description standards and quality criteria for the special use in nanosafety. There are many existing standards and guidelines designed for collecting data and metadata, ranging from regulatory guidelines to specific databases. Most of them are incomplete or not specifically designed for ENM research. However, by merging the content of several existing standards and guidelines, a basic catalogue of descriptive information and quality criteria was generated. In an iterative process, our interdisciplinary team identified deficits and added missing information into a comprehensive schema. Subsequently, this overview was externally evaluated by a panel of experts during a workshop. This whole process resulted in a minimum information table (MIT), specifying necessary minimum information to be provided along with experimental results on effects of ENMs in the biological context in a flexible and modular manner. The MIT is divided into six modules: general information, material information, biological model information, exposure information, endpoint read out information and analysis and statistics. These modules are further partitioned into module subdivisions serving to include more detailed information. A comparison with existing ontologies, which also aim to electronically collect data and metadata on nanosafety studies, showed that the newly developed MIT exhibits a higher level of detail compared to those existing schemas, making it more usable to prevent gaps in the communication of information. CONCLUSION: Implementing the requirements of the MIT into e.g., electronic lab notebooks (ELNs) would make the collection of all necessary data and metadata a daily routine and thereby would improve the reproducibility and reusability of experiments. Furthermore, this approach is particularly beneficial regarding the rapidly expanding developments and applications of novel non-animal alternative testing methods.
Background: Quantum dots (QDs) have great potential as fluorescent labels but cytotoxicity relating to extra- and intracellular degradation in biological systems has to be addressed prior to biomedical applications. In this study, human intestinal cells (Caco-2) grown on transwell membranes were used to study penetration depth, intracellular localization, translocation and cytotoxicity of CdSe/ZnS QDs with amino and carboxyl surface modifications. The focus of this study was to compare the penetration depth of QDs in differentiated vs undifferentiated cells using confocal microscopy and image processing. Results: Caco-2 cells were exposed to QDs with amino (NH2) and carboxyl (COOH) surface groups for 3 days using a concentration of 45 µg cadmium ml−1. Image analysis of confocal/multiphoton microscopy z-stacks revealed no penetration of QDs into the cell lumen of differentiated Caco-2 cells. Interestingly, translocation of cadmium ions onto the basolateral side of differentiated monolayers was observed using high resolution inductively coupled plasma mass spectrometry (ICP-MS). Membrane damage was neither detected after short nor long term incubation in Caco-2 cells. On the other hand, intracellular localization of QDs after exposure to undifferentiated cells was observed and QDs were partially located within lysosomes.Conclusions: In differentiated Caco-2 monolayers, representing a model for small intestinal enterocytes, no penetration of amino and carboxyl functionalized CdSe/ZnS QDs into the cell lumen was detected using microscopy analysis and image processing. In contrast, translocation of cadmium ions onto the basolateral side could be detected using ICP-MS. However, even after long term incubation, the integrity of the cell monolayer was not impaired and no cytotoxic effects could be detected. In undifferentiated Caco-2 cells, both QD modifications could be found in the cell lumen. Only to some extend, QDs were localized in endosomes or lysosomes in these cells. The results indicate that the differentiation status of Caco-2 cells is an important factor in internalization and localization studies using Caco-2 cells. Furthermore, a combination of microscopy analysis and sensitive detection techniques like ICP-MS are necessary for studying the interaction of cadmium containing QDs with cells.
Citrate-stabilized gold nanoparticles (AuNP) agglomerate in the presence of hemoglobin (Hb) at acidic pH. The extent of agglomeration strongly depends on the concentration ratio [Hb]/[AuNP]. Negligible agglomeration occurs at very low and very high [Hb]/[AuNP]. Full agglomeration and precipitation occurs at [Hb]/[AuNP] corresponding to a Hb monolayer on the AuNP. Ratios just above and below this value lead to the formation of an unexpected phase: stable, microscopic AuNP-Hb agglomerates. We investigated the kinetics of agglomeration with dynamic light scattering and the adsorption kinetics of Hb on planar gold with surface acoustic wave phase measurements. Comparing agglomeration and adsorption kinetics leads to an explanation of the complex behavior of this nanoparticle-protein mixture. Agglomeration is initiated either when Hb bridges AuNP or when the electrostatic repulsion between AuNP is neutralized by Hb. It is terminated when Hb has been depleted or when Hb forms multilayers on the agglomerates that stabilize microscopic clusters indefinitely.
Background: Exposure of the airways to carbonaceous nanoparticles can contribute to the development of immune diseases both via the aggravation of the allergic immune response in sensitized individuals and by adjuvant mechanisms during the sensitization against allergens. The cellular and molecular mechanisms involved in these adverse pathways are not completely understood. We recently described that the reduction of carbon nanoparticle-induced lung inflammation by the application of the compatible solute ectoine reduced the aggravation of the allergic response in an animal system. In the current study we investigated the influence of carbon nanoparticles on the sensitization of animals to ovalbumin via the airways. Ectoine was used as a preventive strategy against nanoparticle-induced neutrophilic lung inflammation. Methods: Balb/c mice were repetitively exposed to the antigen ovalbumin after induction of airway inflammation by carbon nanoparticles, either in the presence or in the absence of ectoine. Allergic sensitization was monitored by measurement of immunoglobulin levels and immune responses in lung and lung draining lymph nodes after challenge. Furthermore the role of dendritic cells in the effect of carbon nanoparticles was studied in vivo in the lymph nodes but also in vitro using bone marrow derived dendritic cells. Results: Animals exposed to antigen in the presence of carbon nanoparticles showed increased effects with respect to ovalbumin sensitization, to the allergic airway inflammation after challenge, and to the specific T(H)2 response in the lymph nodes. The presence of ectoine during the sensitization significantly reduced these parameters. The number of antigen-loaded dendritic cells in the draining lymph nodes was identified as a possible cause for the adjuvant effect of the nanoparticles. In vitro assays indicate that the direct interaction of the particles with dendritic cells is not able to trigger CCR7 expression, while this endpoint is achieved by lung lavage fluid from nanoparticle-exposed animals. Conclusions: Using the intervention strategy of applying ectoine into the airways of animals we were able to demonstrate the relevance of neutrophilic lung inflammation for the adjuvant effect of carbon nanoparticles on allergic sensitization.
The partners of the research project NanoS-QM (Quality- and Description Standards for Nanosafety Research Data) identified and invited relevant experts from research institutions, federal agencies, and industry to evaluate the traceability of the results generated with the existing standards and quality criteria. During the discussion it emerged that numerous studies seem to be of insufficient quality for regulatory purposes or exhibit weaknesses with regard to data completeness. Deficiencies in study design could be avoided by more comprehensive use of appropriate standards, many of which already exist. The use of Electronic Laboratory Notebooks (ELNs) that allow for early collection of metadata and enrichment of datasets could be one solution to enable data re-use and simplify quality control. Generally, earlier provision and curation of data and metadata indicating their quality and completeness (e.g. guidelines, standards, standard operating procedures (SOPs) that were used) would improve their findability, accessibility, interoperability, and reusability (FAIR) in the nanosafety research field.
Human respiratory mucus is a biological hydrogel that forms a protective barrier for the underlying epithelium. Modulation of the mucus layer has been employed as a strategy to enhance transmucosal drug carrier transport. However, a drawback of this strategy is a potential reduction of the mucus barrier properties, in particular in situations with an increased exposure to particles. In this study, we investigated the impact of mucus modulation on its protective role. In vitro mucus was produced by Calu-3 cells, cultivated at the air-liquid interface for 21 days and used for further testing as formed on top of the cells. Analysis of confocal 3D imaging data revealed that after 21 days Calu-3 cells secrete a mucus layer with a thickness of 24 ± 6 μm. Mucus appeared to restrict penetration of 500 nm carboxyl-modified polystyrene particles to the upper 5–10 μm of the layer. Furthermore, a mucus modulation protocol using aerosolized N-acetylcysteine (NAC) was developed. This treatment enhanced the penetration of particles through the mucus down to deeper layers by means of the mucolytic action of NAC. These findings were supported by cytotoxicity data, indicating that intact mucus protects the underlying epithelium from particle-induced effects on membrane integrity. The impact of NAC treatment on the protective properties of mucus was probed by using 50 and 100 nm amine-modified and 50 nm carboxyl-modified polystyrene nanoparticles, respectively. Cytotoxicity was only induced by the amine-modified particles in combination with NAC treatment, implying a reduced protective function of modulated mucus. Overall, our data emphasize the importance of integrating an assessment of the protective function of mucus into the development of therapy approaches involving mucus modulation.
Bright fluorescent silica-nanoparticle probes for high-resolution STED and confocal microscopy
(2017)
In recent years, fluorescent nanomaterials have gained high relevance in biological applications as probes for various fluorescence-based spectroscopy and imaging techniques. Among these materials, dye-doped silica nanoparticles have demonstrated a high potential to overcome the limitations presented by conventional organic dyes such as high photobleaching, low stability and limited fluorescence intensity. In the present work we describe an effective approach for the preparation of fluorescent silica nanoparticles in the size range between 15 and 80 nm based on L-arginine-controlled hydrolysis of tetraethoxysilane in a biphasic cyclohexane–water system. Commercially available far-red fluorescent dyes (Atto647N, Abberior STAR 635, Dy-647, Dy-648 and Dy-649) were embedded covalently into the particle matrix, which was achieved by aminosilane coupling. The physical particle attributes (particle size, dispersion, degree of agglomeration and stability) and the fluorescence properties of the obtained particles were compared to particles from commonly known synthesis methods. As a result, the spectroscopic characteristics of the presented monodisperse dye-doped silica nanoparticles were similar to those of the free uncoupled dyes, but indicate a much higher photostability and brightness. As revealed by dynamic light scattering and ζ-potential measurements, all particle suspensions were stable in water and cell culture medium. In addition, uptake studies on A549 cells were performed, using confocal and stimulated emission depletion (STED) microscopy. Our approach allows for a step-by-step formation of dye-doped silica nanoparticles in the form of dye-incorporated spheres, which can be used as versatile fluorescent probes in confocal and STED imaging.
The epidermal growth factor receptor (EGFR) is an abundant membrane protein, which is essential for regulating many cellular processes including cell proliferation. In our earlier studies, we observed an activation of the EGFR and subsequent signaling events after the exposure of epithelial cells to carbon nanoparticles. In the current study, we describe molecular mechanisms that allow for discriminating carbon nanoparticle-specific from ligand-dependent receptor activation. Caveolin-1 is a key player that co-localizes with the EGFR upon receptor activation by carbon nanoparticles. This specific process mediated by nanoparticle-induced reactive oxygen species and the accumulation of ceramides in the plasma membrane is not triggered when cells are exposed to non-nano carbon particles or the physiological ligand EGF. The role of caveolae formation was demonstrated by the induction of higher order structures of caveolin-1 and by the inhibition of caveolae formation. Using an in vivo model with genetically modified mice lacking caveolin-1, it was possible to demonstrate that carbon nanoparticles in vivo trigger EGFR downstream signaling cascades via caveolin-1. The identified molecular mechanisms are, therefore, of toxicological relevance for inhaled nanoparticles. However, nanoparticles that are intentionally applied to humans might cause side effects depending on this phenomenon
Manufactured nanomaterials have the potential to impact an exceedingly wide number of industries and markets ranging from energy storage, electronic and optical devices, light-weight construction to innovative medical approaches for diagnostics and therapy. In order to foster the development of safer nanomaterial-containing products, two main aspects are of major interest: their functional performance as well as their safety towards human health and the environment. In this paper a first proposal for a strategy is presented to link the functionality of nanomaterials with safety aspects. This strategy first combines information on the functionality and safety early during the innovation process and onwards, and then identifies Safe-by-Design (SbD) actions that allow for optimisation of both aspects throughout the innovation process. The strategy encompasses suggestions for the type of information needed to balance functionality and safety to support decision making in the innovation process. The applicability of the strategy is illustrated using a literature-based case study on carbon nanotube-based transparent conductive films. This is a first attempt to identify information that can be used for balancing functionality and safety in a structured way during innovation processes.