Refine
Document Type
- Article (1)
- Conference Proceeding (1)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- yes (2)
Keywords
Scientific Unit
https://www.iseedproject.eu/) targets towards the development of a radically simplified and environmentally friendly approach for environmental monitoring. Specifically, I-Seed aims at developing a new generation of self-deployable and biodegradable soft miniaturized robots, inspired by the morphology and dispersion abilities of plant seeds, able to perform low-cost, environmentally responsible, in-situ measurements. The natural functional mechanisms of seeds dispersal offer a rich source of robust, highly adaptive, mass and energy efficient mechanisms, and behavioral and morphological intelligence, which can be selected and implemented for advanced, but simple, technological inventions. I-Seed robots are conceived as unique in their movement abilities because inspired by passive mechanisms and materials of natural seeds, and unique in their environmentally friendly design because made of all biodegradable components. Sensing is based on a chemical transduction mechanism in a stimulus-responsive sensor material with fluorescence-based optical readout, which can be read via one or more drones equipped with fluorescent LiDAR technology and a software able to perform a real time georeferencing of data. The I-Seed robotic ecosystem is envisioned to be used for collecting environmental data in-situ with high spatial and temporal resolution across large remote areas where no monitoring data are available, and thus for extending current environmental sensor frameworks and data analysis systems.
Continuous and distributed monitoring of environmental parameters may pave the way for developing sustainable strategies to tackle climate challenges. State-of-the-art technologies, made with electronic systems, are often costly, heavy, and generate e-waste. Here, we propose a new generation of self-deployable, biocompatible, and luminescent artificial flying seeds for wireless, optical, and eco-friendly monitoring of environmental parameters (i.e., temperature). Inspired by natural Acer campestre plant seeds, we developed three-dimensional functional printed luminescent seed–like fliers, selecting polylactic acid as a biocompatible matrix and temperature as a physical parameter to be monitored. The artificial seeds mimic the aerodynamic and wind dispersal performance of the natural ones. The sensing properties are given by the integration of fluorescent lanthanide–doped particles, whose photoluminescence properties depend on temperature. The luminescent artificial flying seeds can be optically read from a distance using eye-safe near-infrared wavelengths, thus acting as a deployable sensor for distributed monitoring of topsoil environmental temperatures.