Refine
Language
- English (19)
Has Fulltext
- yes (19)
Is part of the Bibliography
- yes (19)
Keywords
- immunology (4)
- biophysics (2)
- stiffness (2)
- 3D matrix (1)
- AFM (1)
- CD4+ T cell (1)
- CTLs (1)
- Cinobufacini infection (1)
- Cytotoxic T lymphocytes (1)
- Cytotoxicity (1)
Groups
- Fellow (16)
- Dynamische Biomaterialien (6)
- Interaktive Oberflächen (1)
Research Field
Natural killer (NK) cells play key roles in eliminating pathogen-infected cells. Verbena officinalis (V. officinalis) has been used as a medical plant in traditional and modern medicine for its anti-tumor and anti-inflammatory activities, but its effects on immune responses remain largely elusive. This study aimed to investigate the potential of V. officinalis extract (VO extract) to regulate inflammation and NK cell functions. We examined the effects of VO extract on lung injury in a mouse model of influenza virus infection. We also investigated the impact of five bioactive components of VO extract on NK killing functions using primary human NK cells. Our results showed that oral administration of VO extract reduced lung injury, promoted the maturation and activation of NK cells in the lung, and decreased the levels of inflammatory cytokines (IL-6, TNF-α and IL-1β) in the serum. Among five bioactive components of VO extract, Verbenalin significantly enhanced NK killing efficiency in vitro, as determined by real-time killing assays based on plate-reader or high-content live-cell imaging in 3D using primary human NK cells. Further investigation showed that treatment of Verbenalin accelerated the killing process by reducing the contact time of NK cells with their target cells without affecting NK cell proliferation, expression of cytotoxic proteins, or lytic granule degranulation. Together, our findings suggest that VO extract has a satisfactory anti-inflammatory effect against viral infection in vivo, and regulates the activation, maturation, and killing functions of NK cells. Verbenalin from V. officinalis enhances NK killing efficiency, suggesting its potential as a promising therapeutic to fight viral infection.
Cytotoxic T lymphocytes (CTLs) are key players to eliminate tumorigenic or pathogen-infected cells using lytic granules (LG) and Fas ligand (FasL) pathways. Depletion of glucose leads to severely impaired cytotoxic function of CTLs. However, the impact of excessive glucose on CTL functions still remains largely unknown. Here we used primary human CD8(+) T cells, which were stimulated by CD3/CD28 beads and cultured in medium either containing high glucose (HG, 25 mM) or normal glucose (NG, 5.6 mM). We found that in HG-CTLs, glucose uptake and glycolysis were enhanced, whereas proliferation remained unaltered. Furthermore, CTLs cultured in HG exhibited an enhanced CTL killing efficiency compared to their counterparts in NG. Unexpectedly, expression of cytotoxic proteins (perforin, granzyme A, granzyme B and FasL), LG release, cytokine/cytotoxic protein release and CTL migration remained unchanged in HG-cultured CTLs. Interestingly, additional extracellular Ca2+ diminished HG-enhanced CTL killing function. Our findings suggest that in an environment with excessive glucose, CTLs could eliminate target cells more efficiently, at least for a certain period of time, in a Ca2+-dependent manner.
Efficacy of cytotoxic T lymphocyte (CTL)-based immunotherapy is still unsatisfactory against solid tumors, which are frequently characterized by condensed extracellular matrix. Here, using a unique 3D killing assay, we identify that the killing efficiency of primary human CTLs is substantially impaired in dense collagen matrices. Although the expression of cytotoxic proteins in CTLs remained intact in dense collagen, CTL motility was largely compromised. Using light-sheet microscopy, we found that persistence and velocity of CTL migration was influenced by the stiffness and porosity of the 3D matrix. Notably, 3D CTL velocity was strongly correlated with their nuclear deformability, which was enhanced by disruption of the microtubule network especially in dense matrices. Concomitantly, CTL migration, search efficiency, and killing efficiency in dense collagen were significantly increased in microtubule-perturbed CTLs. In addition, the chemotherapeutically used microtubule inhibitor vinblastine drastically enhanced CTL killing efficiency in dense collagen. Together, our findings suggest targeting the microtubule network as a promising strategy to enhance efficacy of CTL-based immunotherapy against solid tumors, especially stiff solid tumors.
Collagen density defines 3D migration of CTLs and their consequent cytotoxicity against tumor cells
(2021)
Solid tumors are often characterized by condensed extracellular matrix (ECM). The impact of dense ECM on cytotoxic T lymphocytes (CTL) function is not fully understood. Here, we report that CTL-mediated cytotoxicity is substantially impaired in dense collagen matrices. Although the intrinsic killing machinery including expression of cytotoxic proteins and degranulation was intact, CTL motility was substantially compromised in dense collagen. We found that for 3D CTL migration, persistence and velocity was regulated by collagen stiffness and the porosity, respectively. Interestingly, 3D CTL velocity is strongly correlated with their nuclear deformability/flexibility during migration, which is regulated by the microtubule network. Moreover, CTL migration was completely abolished by inhibition of actin polymerization and or myosin IIA. Remarkably, disruption of the microtubule-networks significantly improves the impaired migration, search efficiency, and cytotoxicity of CTLs in dense collagen. Our work suggests the microtubule network as a promising target to rescue impaired CTL killing capacity in solid tumor related scenarios.
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer (BC), which is characterized by the total absence of human epidermal growth factor receptor 2 (HER2), progesterone receptor (PR), and estrogen receptor (ER) expression. Cinobufacini injection (CI) is the aqueous extract from the dry skin of Bufo gargarizans, which is broadly used for the treatment of malignant tumors. However, the potential mechanism of CI against TNBC has not been fully revealed. In this study, we found that CI inhibited the proliferation of MDA-MB-231 and 4T1 cells in a time- and dose-dependent manner. RNA-seq data showed that downregulated and upregulated genes were mainly enriched in biological processes related to tumor cell proliferation, including cell cycle arrest and regulation of apoptosis signaling pathways. Indeed, after CI treatment, the protein level of CDK1 and Bcl-2/Bax decreased, indicating that CI induced the cell cycle of MDA-MB-231 arrest in the G2/M phase and increased the rate of apoptosis. Meanwhile, CI significantly inhibited the growth of tumor in vivo, and RNA-seq data showed that the TAZ signaling pathway played a vital role after CI treatment. Both immunohistochemistry and Western blot analysis confirmed the downregulation of Pin1 and TAZ, caused by CI treatment. Furthermore, the bioinformatics analysis indicated that Pin1 and TAZ were indeed elevated in TNBC patients, with poor staging, classification, and patient survival rate. In conclusion, CI effectively inhibited the proliferation of TNBC in vitro and in vivo and induced their apoptosis and cycle arrest through the Pin1-TAZ pathway.
Visualizing interactions between cells and the extracellular matrix (ECM) mesh is important to understand cell behavior and regulatory mechanisms by the extracellular environment. However, long term visualization of three-dimensional (3D) matrix structures remains challenging mainly due to photobleaching or blind spots perpendicular to the imaging plane. Here, we combine label-free light-sheet scattering microcopy (LSSM) and fluorescence microscopy to solve these problems. We verified that LSSM can reliably visualize structures of collagen matrices from different origin including bovine, human and rat tail. The quality and intensity of collagen structure images acquired by LSSM did not decline with time. LSSM offers abundant wavelength choice to visualize matrix structures, maximizing combination possibilities with fluorescently-labelled cells, allowing visualizing of long-term ECM-cell interactions in 3D. Interestingly, we observed ultrathin thread-like structures between cells and matrix using LSSM, which were not observed by normal fluorescence microscopy. Transient local alignment of matrix by cell-applied forces can be observed. In summary, LSSM provides a powerful and robust approach to investigate the complex interplay between cells and ECM.Competing Interest StatementThe authors have declared no competing interest.
Natural killer (NK) cells play a vital role in eliminating tumorigenic cells. Efficient locating and killing of target cells in complex three-dimensional (3D) environments is critical for their functions under physiological conditions. Recent studies have shown that NK cell activation is regulated by substrate stiffness. However, the role of mechanosensing in regulating NK cell killing efficiency in physiologically relevant scenarios is poorly understood. In this study, we report that the responsiveness of NK cells is regulated by tumor cell stiffness. NK cell killing efficiency in 3D is impaired against softened tumor cells, while it is enhanced against stiffened tumor cells. Notably, the durations required for NK cell killing and detachment are significantly shortened for stiffened tumor cells. Furthermore, we have identified PIEZO1 as the predominantly expressed mechanosensitive ion channel in NK cells. Perturbation of PIEZO1 by GsMTx4 abolishes stiffness-dependent NK cell responsiveness, significantly impairs the killing efficiency of NK cells in 3D, and substantially reduces NK cell infiltration into 3D collagen matrices. Conversely, PIEZO1 activation enhances NK killing efficiency as well as infiltration. In conclusion, our findings demonstrate that PIEZO1-mediated mechanosensing is crucial for NK killing functions, highlighting the role of mechanosensing in NK cell killing efficiency under physiological conditions and the influence of environmental physical cues on NK cell functions.
In vivo, immune killer cells must infiltrate into tissues and search for their cognate target cells in 3D environments. To investigate the cytotoxic function of immune killer cells, there is currently a significant need for an in vitro kinetic assay that resembles 3D in vivo features. Our work presents a high-throughput kinetic killing assay in 3D that is a robust and powerful tool for evaluating the killing efficiency of immune killer cells, as well as the viability of tumor cells under in vivo-like conditions. This assay holds particular value for assessing primary human CTLs and NK cells and can also be applied to primary murine killer cells. By utilizing collagen concentrations to mimic healthy tissue, soft tumors, and stiff tumors, this assay enables the evaluation of cell function and behavior in physiologically and pathologically relevant scenarios, particularly in the context of solid tumors. Furthermore, this assay shows promise as a personalized strategy for selecting more effective drugs/treatments against tumors, using primary immune cells for individual patients to achieve improved clinical outcomes.
T cells are activated by cognate target cells via an intimate contact, termed immunological synapse (IS). Cellular mechanical properties, especially stiffness, are essential to regulate cell functions, T cell stiffness at a subcellular level at the IS still remains largely elusive. In this work, we established an atomic force microscopy (AFM)-based elasticity mapping method on whole T cells to obtain an overview of the stiffness with a resolution of ~ 60 nm. Using Jurkat T-cells and primary human CD4+ T cells, we show that in the T cells in contact with functionalized surfaces, the lamellipodia are stiffer than the cell body. Upon IS formation, T cell stiffness is substantially enhanced both at the lamellipodia and in cell body. Chelation of intracellular Ca2+ abolishes IS-induced stiffening at the lamellipodia but has no influence on cell body-stiffening, suggesting different regulatory mechanism of IS-induced stiffening between the lamellipodia and the cell body.Competing Interest StatementThe authors have declared no competing interest.