Refine
Document Type
- Article (2)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- yes (2)
Keywords
- Functionality (1)
- Manufactured nanomaterials (1)
- Safe innovation (1)
- Safe-by-design (1)
- Stage-gate model (1)
- human health (1)
- innovation model (1)
- nanotechnology (1)
- safe innovation (1)
- safe-by-design (1)
Scientific Unit
Safe-by-Design aims to reduce uncertainties and/or increase the human health and environmental safety from already early in the innovation process onwards and will thereby contribute to increased innovation efficiency, economic viability, interdisciplinary collaboration, consumers trust and improve sustainability. Since most innovators or designers are neither toxicologists nor risk assessors, considering human health safety aspects within their innovation process may be challenging. This paper provides sets of questions that can help innovators to assess nanospecific human health safety aspects of their product or material along the various stages of the innovation process. Addressing these questions will facilitate innovators to identify which type of information may support decisions on how to address potential human health risks in the innovation process. The identified information on the human health safety aspects can help innovators to decide if further investments in the product or material are beneficial. It may allow them to rank, prioritize and choose safer alternatives early in the innovation process. This may enable innovators to better anticipate on potential safety issues in an early stage, preventing these safety issues to become an innovation killer in a later stage of the innovation process. This approach to identify potential nanospecific human health risks should be considered as complementary to current regulations. The applicability of this approach was evaluated using a few industrial case studies. To determine if the approach is applicable to the innovation of a broader group of nanomaterials and nano-enabled products, more experience within various industrial sectors is needed.
Manufactured nanomaterials have the potential to impact an exceedingly wide number of industries and markets ranging from energy storage, electronic and optical devices, light-weight construction to innovative medical approaches for diagnostics and therapy. In order to foster the development of safer nanomaterial-containing products, two main aspects are of major interest: their functional performance as well as their safety towards human health and the environment. In this paper a first proposal for a strategy is presented to link the functionality of nanomaterials with safety aspects. This strategy first combines information on the functionality and safety early during the innovation process and onwards, and then identifies Safe-by-Design (SbD) actions that allow for optimisation of both aspects throughout the innovation process. The strategy encompasses suggestions for the type of information needed to balance functionality and safety to support decision making in the innovation process. The applicability of the strategy is illustrated using a literature-based case study on carbon nanotube-based transparent conductive films. This is a first attempt to identify information that can be used for balancing functionality and safety in a structured way during innovation processes.