Refine
Year of publication
- 2016 (1)
Document Type
- Article (1)
Language
- English (1)
Has Fulltext
- yes (1)
Is part of the Bibliography
- yes (1)
Scientific Unit
- Energy Materials (1)
We introduce a high performance hybrid electrochemical energy storage system based on an aqueous electrolyte containing tin sulfate (SnSO4) and vanadyl sulfate (VOSO4) with nanoporous activated carbon. The energy storage mechanism of this system benefits from the unique synergy of concurrent electric double-layer formation, reversible tin redox reactions, and three-step redox reactions of vanadium. The hybrid system showed excellent electrochemical properties such as a promising energy capacity (ca. 75 W h kg-1, 30 W h L-1) and a maximum power of up to 1.5 kW kg-1 (600 W L-1, 250 W m-2), exhibiting capacitor-like galvanostatic cycling stability and a low level of self-discharging rate.