Refine
Document Type
- Article (2)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- yes (2)
Scientific Unit
Gold nanoparticles (AuNP) are frequently used in surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) for analysis of biomolecules because they exhibit suitable thermal and chemical properties as well as strong surface plasmonic effects. Moreover, the structures of AuNP can be controlled by well-established synthesis protocols. This was important in the present work, which studied the influence of the nanoparticles’ structures on atmospheric pressure (AP)-SALDI-MS performance. A series of AuNP with different core sizes and capping ligands were investigated, to examine the desorption/ionization efficiency (DIE) under AP-SALDI conditions. The results showed that both the AuNP core size as well as the nature of the surface ligand had a strong influence on DIE. DIE increased with the size of the AuNP and the hydrophobicity of the ligands. Chemical interactions between ligand and analytes also influenced DIE. Moreover, we discovered that removing the organic ligands from the deposited AuNP substrate layer by simple laser irradiation prior to LDI further amplified DIE values. The optimized AuNP were successfully used to analyze a wide arrange of different low molecular weight biomolecules as well as a crude pig brain extract, which readily demonstrated the ability of the technique to detect a wide range of lipid species within highly complex samples.
In this study, we propose a simple and rapid technique for characterization of free fatty acids and triacylglycerides (TAG) based on palladium nanoparticular (Pd-NP) surface-assisted laser desorption/ionization (SALDI) mass spectrometry (MS). The implemented Pd-NP material allowed detection of free fatty acids and TAGs exclusively as [M + K] + ions in positive ion mode. Under negative ionization conditions, unusual trimetric structures were generated for free fatty acids, while TAGs underwent irreproducible degradation reactions. Importantly, the mass spectra obtained from Pd-NP targets in positive ion mode were very clean without interferences from matrix-derived ions in the low m/z range and readily enabled the detection of intact TAGs in vegetable oils without major fragmentation reactions as compared to conventional MALDI-MS, requiring only a minimal amount of sample preparation.