Refine
Document Type
- Article (3)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- yes (3)
Keywords
- inkjet printing (2)
- printed electronics (2)
- conductive ink (1)
- conductive inkjet printing (1)
- high resolution (1)
- hybrid inks (1)
- light-emitting diodes (1)
- metal nanoparticles (1)
- porous substrate (1)
- quantum dots (1)
Scientific Unit
- Structure Formation (3)
- Electrofluids (1)
Soft electronic devices enable new types of products for an ergonomic interaction of humans with a digital environment. The inkjet (droplet on demand) printing of electrically conductive ink on soft substrates such as paper, textile, and polymers is a promising route for the prototyping and small-scale production of soft electronics that is efficient, cost-saving, and provides a rapid turnaround due to its fully digital workflow. The choice of materials and processing parameters is challenging, however, due to the combined complexity of metal-containing inks, their dynamics during droplet ejection, the active role of the porous substrate, and possible post-deposition steps. This review focuses on recent developments in inkjet printing of metal inks onto soft, porous substrates and their applications. The first section discusses the general principles in the inkjet printing of metal inks, including drop formation and jetting, wetting, and post treatment processes. The second section deals with the effect that the porosity of substrates has on the drying, diffusion, and adhesion of inks. Finally, current challenges and achievements of inkjet-printed, metal-containing inks are discussed.
Abstract The direct printing of microscale quantum dot light-emitting diodes (QLEDs) is a cost-effective alternative to the placement of pre-formed LEDs. The quality of printed QLEDs currently is limited by nonuniformities in droplet formation, wetting, and drying during inkjet printing. Here, optimal ink formulation which can suppress nonuniformities at the pixel and array levels is demonstrated. A solvent mixture is used to tune the ejected droplet size, ensure wetting, and provoke Marangoni flows that prevent coffee stain rings. Arrays of green QLED devices are printed at a resolution of 500 pixels in.−1 with a maximum luminance of ≈3000 cd m−2 and a peak current efficiency of 2.8 cd A−1. The resulting array quality is sufficient to print displays at state-of-the-art resolutions.
Reversible Conductive Inkjet Printing of Healable and Recyclable Electrodes on Cardboard and Paper
(2020)
Conductive inkjet printing with metal nanoparticles is irreversible because the particles are sintered into a continuous metal film. The resulting structures are difficult to remove or repair and prone to cracking. Here, a hybrid ink is used to obviate the sintering step and print interconnected particle networks that become highly conductive immediately after drying. It is shown that reversible conductive printing is possible on low-cost cardboard samples after applying standard paper industry coats that are adapted in terms of surface energy and porosity. The conductivity of the printed films approaches that of sintered standard inks on the same substrate, but the mobility of the hybrid particle film makes them less sensitive to cracks during bending and folding of the substrate. Damages that occur can be partially repaired by wetting the film such that particle mobility is increased and particles move to bridge insulating gaps in the film. It is demonstrated that the conductive material can be recovered from the cardboard at the end of its life time and be redispersed to recycle the particles and reuse them in conductive inks.