Refine
Year of publication
Language
- English (42)
Is part of the Bibliography
- yes (42)
Keywords
- adhesion (10)
- bioinspiration (3)
- bioinspired (3)
- micropatterning (3)
- roughness (3)
- PDMS (2)
- contact mechanics (2)
- gecko (2)
- mechanical testing (2)
- microhandling (2)
Scientific Unit
Enhanced dry adhesion of micropatterned polymeric surfaces has been frequently demonstrated. Among the design parameters, the cap geometry plays an important role to improve their performance. In this work, we combined experiments on single polyurethane mushroom-shaped fibrils (with stalk diameter 80 µm and height 125 µm) against flat glass, with numerical simulations implementing a cohesive zone. We found that the geometry of the mushroom cap strongly affects the interfacial crack behavior and the pull-off stress. The experimental and numerical results suggest that optimal adhesion was accompanied by the appearance of both edge and interior interfacial cracks during separation. Finite elemental analyses revealed the evolution of the interfacial stress distributions as a function of the cap thickness and confirmed the distinct detachment mechanisms. Furthermore, the effect of the stalk diameter and the Young's modulus on the adhesive force was established, resulting in an optimal design for mushroom-shaped fibrils.
Viscoelasticity is well known to cause significant hysteresis of crack closure and opening when an elastomer is brought in and out of contact with a flat, rigid, adhesive counterface. A separate origin of adhesive hysteresis is small-scale, elastic multistability. Here, we study a system in which both mechanisms act concurrently. Specifically, we compare the simulated and experimentally measured time evolution of the interfacial force and the real contact area between a soft elastomer and a rigid, flat punch, to which small-scale, single-sinusoidal roughness is added. To this end, we further the Green's function molecular dynamics method and extend recently developed imaging techniques to elucidate the rate- and preload-dependence of the pull-off process. Our results reveal that hysteresis is much enhanced when the saddle points of the topography come into contact, which, however, is impeded by viscoelastic forces and may require sufficiently large preloads. A similar coaction of viscous- and multistability effects is expected to occur in macroscopic polymer contacts and to be relevant, e.g., for pressure-sensitive adhesives and modern adhesive gripping devices.
Adhesives for interaction with human skin and tissues are needed for multiple applications. Micropatterned dry adhesives are potential candidates, allowing for a conformal contact and glue-free adhesion based on van der Waals interactions. In this study, we investigate the superior adhesion of film-terminated fibrillar microstructures (fibril diameter, 60 μm; aspect ratio, 3) in contact with surfaces of skin-like roughness (Rz 50 μm). Adhesion decays only moderately with increasing roughness, in contrast to unstructured samples. Sinusoidal model surfaces adhere when their wavelengths exceed about four fibril diameters. The film-terminated microstructure exhibits a saturation of the compressive force during application, implying a pressure safety regime protecting delicate counter surfaces. Applications of this novel adhesive concept are foreseen in the fields of wearable electronics and wound dressing.
Bioinspired fibrillar adhesives have been proposed for novel gripping systems with enhanced scalability and resource efficiency. Here, we propose an in-situ optical monitoring system of the contact signatures, coupled with image processing and machine learning. Visual features were extracted from the contact signature images recorded at maximum compressive preload and after lifting a glass object. The algorithm was trained to cope with several degrees of misalignment and with unbalanced weight distributions by off-center gripping. The system allowed an assessment of the picking process for objects of various mass (200, 300, and 400 g). Several classifiers showed a high accuracy of about 90 % for successful prediction of attachment, depending on the mass of the object. The results promise improved reliability of handling objects, even in difficult situations.
Purpose: A powerful principle in nature is the presence of surface patterns to improve specific characteristics or to enable completely new functions. Here, we present two case studies where bioinspired surface patterns based on the adhesive system of geckos may be applied for biomedical applications: residue-free adhesion to skin and gecko-inspired suture threads for knot-free wound closure. Methods: Gecko-inspired skin adhesives were fabricated by soft lithography of polydimethylsiloxane with successive inking and dipping steps. Their adhesion was measured using a home built adhesion tester designed for patterned surfaces. Preliminary lap shear tests on the back of a human hand were also performed. Commercial suture threads from different materials were patterned in the group of A. del Campo at the Max-Planck-Institute for Polymer Research (Mainz, Germany) using oxygen plasma. The treated threads were pulled through artificial skin in both directions measuring the peak force and the pull through force. Results and Conclusions: Unpatterned reference samples of the skin adhesive did not stick to human skin, while the patterned samples all showed notable adhesion up to 1.2 Newton for a sample size of approximately 3 cm². First results with the patterned suture threads indicated that the surface patterning of the thread has only a minor effect on the pull-through forces. To achieve knot-free sewing the surface geometry of the suture threads needs to be optimized and more realistic testing procedures, e.g. testing on human skin, are necessary.
Micropatterned dry adhesives rely mainly on van der Waals interactions. In this paper, we explore the adhesion strength increase that can be achieved by superimposing an electrostatic field through interdigitated subsurface electrodes. Micropatterns were produced by replica molding in silicone. The adhesion forces were characterized systematically by means of experiments and numerical modeling. The force increased with the square of the applied voltage for electric fields up to 800 V. For larger fields, a less-than-quadratic scaling was observed, which is likely due to the small, field-dependent electrical conductivity of the materials involved. The additional adhesion force was found to be up to twice of the field-free adhesion. The results suggest an alternative method for the controlled handling of fragile or miniaturized objects.
The dragonfish is a voracious predator of the deep sea with an arsenal of tools to hunt prey and remain concealed. In contrast to its dark pigmented skin, the dragonfish is equipped with transparent teeth. Here, we establish the structure, composition, and mechanical properties of the transparent teeth for the first time. We find the enamel-like layer to consist of nanocrystalline hydroxyapatite domains (∼20 nm grain size) embedded in an amorphous matrix, whereas in the dentin layer the nanocrystalline hydroxyapatite coats nanoscale collagen fibrils forming nanorods. This nanoscale structure is responsible for the much-reduced Rayleigh light scattering, which is further ensured by the sufficiently thin walls. Here, we suggest that the nanostructured design of the transparent dragonfish teeth enables predatory success as it makes its wide-open mouth armed with saber-like teeth effectively disappear, showing no contrast to the surrounding blackness of the fish nor the background darkness of the deep sea.
Micro-objects stick tenaciously to each other—a well-known show-stopper in microtechnology and in handling micro-objects. Inspired by the trigger plant, we explore a mechanical metastructure for overcoming adhesion involving a snap-action mechanism. We analyze the nonlinear mechanical response of curved beam architectures clamped by a tunable spring, incorporating mono- and bistable states. As a result, reversible miniaturized snap-through devices are successfully realized by micron-scale direct printing, and successful pick-and-place handling of a micro-object is demonstrated. The technique is applicable to universal scenarios, including dry and wet environment, or smooth and rough counter surfaces. With an unprecedented switching ratio (between high and low adhesion) exceeding 104, this concept proposes an efficient paradigm for handling and placing superlight objects. Nature teaches us how to design reliable grippers for moving and placing super-small objects that tend to stick to everywhere.
The strength of metals increases with decreasing sample size, a trend known as the size effect. In particular, focused ion beam-milled body-centered cubic (BCC) micropillars exhibit a size effect known to scale with the ratio of the test temperature to the critical temperature (Tc) of the BCC metal, a measure of how much the yield stress is governed by the lattice resistance. In this paper, this effect is systematically studied by performing high-temperature compression tests on focused ion beam-manufactured Ta and W single crystal pillars ranging in diameter from 500 nm to 5 μm at temperatures up to 400 °C, and discussed in the context of bulk strength and size dependent stresses. Both metals show larger size effects at higher temperatures, reaching values that are in the range of FCC metals at temperatures near Tc. However, it is demonstrated that size effects can be considerably affected by material parameters such as dislocation density and lattice friction, as well as by the yield criterion used. Furthermore, for W, a change from uniform wavy deformation to localized deformation is observed with increasing temperature and pillar size, further indicating that the temperature ratio strongly influences the relative motion of screw and edge dislocations.
Recent advances in bio-inspired microfibrillar adhesives have resulted in technologies that allow reliable attachment to a variety of surfaces. Because capillary and van der Waals forces are considerably weakened underwater, fibrillar adhesives are however far less effective in wet environments. Although various strategies have been proposed to achieve strong reversible underwater adhesion, strong adhesives that work both in air and underwater without additional surface treatments have yet to be developed. In this study, we report a novel design—cupped microstructures (CM)—that generates strong controllable adhesion in air and underwater. We measured the adhesive performance of cupped polyurethane microstructures with three different cup angles (15, 30, and 45°) and the same cup diameter of 100 μm in dry and wet conditions in comparison to standard mushroom-shaped microstructures (MSMs) of the same dimensions. In air, 15°CM performed comparably to the flat MSM of the same size with an adhesion strength (force per real contact area) of up to 1.3 MPa, but underwater, 15°CM achieved 20 times stronger adhesion than MSM ( ∼ 1 MPa versus ∼ 0.05 MPa). Furthermore, the cupped microstructures exhibit self-sealing properties, whereby stronger pulls lead to longer stable attachment and much higher adhesion through the formation of a better seal.