Refine
Year of publication
- 2021 (2)
Document Type
- Article (2)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- yes (2)
Keywords
Scientific Unit
Multiblock copolymers with charged blocks are complex systems that show great potential for enhancing the structural control of block copolymers. A pentablock terpolymer PMMA-b-PDMAEMA-b-P2VP-b-PDMAEMA-b-PMMA is investigated. It contains two types of midblocks, which are weak cationic polyelectrolytes, namely poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and poly(2-vinylpyridine) (P2VP). Furthermore, these are end-capped with short hydrophobic poly(methyl methacrylate) (PMMA) blocks in dilute aqueous solution and thin films. The self-assembly behavior depends on the degrees of ionization α of the P2VP and PDMAEMA blocks, which are altered in a wide range by varying the pH value. High degrees of ionization of both blocks prevent structure formation, whereas microphase-separated nanostructures form for a partially charged and uncharged state. While in solutions, the nanostructure formation is governed by the dependence of the P2VP block solubility of the and the flexibility of the PDMAEMA blocks on α, in thin films, the dependence of the segregation strength on α is key. Furthermore, the solution state plays a crucial role in the film formation during spin-coating. Overall, both the mixing behavior of the 3 types of blocks and the block sequence, governing the bridging behavior, result in strong variations of the nanostructures and their repeat distances.
Identification and control of the disintegration mechanism of polymer nanoparticles are essential for applications in transport and release including polymer delivery systems. Structural changes during the disintegration of poly(N-isopropylacrylamide) (PNIPAM) mesoglobules in aqueous solution are studied in situ and in real time using kinetic small-angle neutron scattering with a time resolution of 50 ms. Simultaneously length scales between 1 and 100 nm are resolved. By initiating phase separation through fast pressure jumps across the coexistence line, 3 wt% PNIPAM solutions are rapidly brought into the one-phase state. Starting at the same temperature (35.1 °C) and pressure (17 MPa) the target pressure is varied over the range 25–48 MPa, allowing to systematically alter the osmotic pressure of the solvent within the mesoglobules. Initially, the mesoglobules have a radius of gyration of about 80 nm and contain a small amount of water. Two disintegration mechanisms are identified: (i) for target pressures close to the coexistence line, single polymers are released from the surface of the mesoglobules, and the mesoglobules decrease in size, which takes ∼30 s. (ii) For target pressures more distant from the coexistence line, the mesoglobules are swollen by water, and subsequently the chains become more and more loosely associated. In this case, disintegration proceeds within less than 10 s, controlled by the osmotic pressure of the solvent.