Refine
Document Type
Language
- English (7)
Has Fulltext
- yes (7)
Is part of the Bibliography
- yes (7)
Keywords
- AuNW (1)
- Flexible electronics (1)
- Metal grids (1)
- Nanoimprint (1)
- TE (1)
- Transparent conductive electrodes (1)
- Ultrathin gold nanowires (1)
- gold nanowires (1)
- nanoparticles (1)
- nanowires (1)
Scientific Unit
- Chemical Analytics (1)
- Electrofluids (1)
- Structure Formation (5)
Transparent electrodes (TEs) are key components of modern optoelectronic devices like touch screens, solar cells, and OLEDs, but an inherent trade-off between high electrical conductivity and optical transparency limits the available material range. Indium tin oxide (ITO) has been dominating the market, but cannot provide the mechanical flexibility that novel devices based on polymer substrates require; high process temperatures required for high-grade ITO exceed the thermal budget of many polymers. Solutionprocessed metal grids from nanoscale building blocks are a promising alternative providing superior mechanical flexibility at cost-effective and scalable fabrication with low thermal budget. For this dissertation, ultrathin gold nanowires (AuNWs) from wet-chemical synthesis were explored as novel base material for TEs. Plasma sintering was shown to ameliorate the wires’ high contact resistances and poor stability. A novel nanoimprinting process was developed to pattern AuNWs into grids. The method relies on the large flexibility of the AuNWs and their ability to self-assemble into continuous hierarchical superstructures in the cavities of a pre-patterned elastomeric stamp. The process yielded ordered grids with submicron linewidth at low thermal budget, thus going beyond state-of-theart printed grids. The grids also showed competitive optoelectronic properties and superior mechanical flexibility to the incumbent materials and were applied as TEs in touch sensors.
We fabricated flexible, transparent, and conductive metal grids as transparent conductive materials (TCM) with adjustable properties by direct nanoimprinting of self-assembling colloidal metal nanowires. Ultrathin gold nanowires (diameter below 2 nm) with high mechanical flexibility were confined in a stamp and readily adapted to its features. During drying, the wires self-assembled into dense bundles that percolated throughout the stamp. The high aspect ratio and the bundling yielded continuous, hierarchical superstructures that connected the entire mesh even at low gold contents. A soft sintering step removed the ligand barriers but retained the imprinted structure. The material exhibited high conductivities (sheet resistances down to 29 Ω/sq) and transparencies that could be tuned by changing wire concentration and stamp geometry. We obtained TCMs that are suitable for applications such as touch screens. Mechanical bending tests showed a much higher bending resistance than commercial ITO: conductivity dropped by only 5.6% after 450 bending cycles at a bending radius of 5 mm.
Novel types of Transparent Conductive Materials (TCMs) based on metal nanostructures are discussed. Dispersed metal nanoparticles can be deposited from liquids with moderate thermal budgets to form conductive films that are suitable for thin-film solar cells, displays, touch screens, and nanoelectronics. We aim at new TCMs that combine high electrical conductivity with optical transparency and mechanical flexibility. Wet-processed films of randomly arranged metallic nanowires networks are commercially established and provide a relatively cost-effective, scalable production. Ultrathin gold nanowires (AuNWs) with diameters below 2nm and high aspect ratios have recently become available. They combine mechanical flexibility, high optical transparency, and chemical inertness. AuNWs carry oleylamine capping ligands from synthesis that cause high contact resistances at their junctions. We investigated different annealing processes based on temperature and plasma treatment, to remove the ligands after deposition and to allow electrical conductivity. Their effect on the resulting nanostructure and on the material properties was studied. Scanning Electron Microscopy (SEM) and optical spectroscopy revealed changes in the microstructure for the different post-treatments. We found that the conductivity and the stability of the TCM depended strongly on its final microstructure. We demonstrate that the best results are obtained using H2-plasma treatment.
Metal-based nanoparticle inks for printed electronics usually require sintering to improve the poor electron transport at particle-particle interfaces. The ligands required for colloidal stability act as insulating barriers and must be removed in a post-deposition sintering step. This complicates the fabrication process and makes it incompatible with many flexible substrates. Here, we bind a conjugated, electrically conductive polymer on gold nanorods (AuNRs) as a ligand. The polymer, poly[2-(3-thienyl)-ethyloxy-4-butylsulfonate)] (PTEBS), provides colloidal stability and good electron transport properties to stable, sintering-free inks. We confirm that the polymer binds strongly through a multidentate binding motif and provides superior colloidal stability in polar solvents over months by IR and Raman spectrometry and zeta potential measurements. We demonstrate that the developed ligand exchange protocol is directly applicable to other polythiophenes such as poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). Films of AuNRs coated with above polymers reached conductivities directly after deposition comparable to conventional metal inks after ligand removal and retained their conductivity for at least one year when stored under ambient conditions.
Ultrathin gold nanowires are unusual colloidal objects that assemble into bundles with line contacts between parallel wires. Each molecule in the contact line interacts with many ligand and solvent molecules. We used X-ray scattering and electron microscopy to study how these interactions control assembly.
Dissection of iron signaling and iron accumulation by overexpression of subgroup Ib bHLH039 protein
(2017)
Iron is an essential growth determinant for plants, and plants acquire this micronutrient in amounts they need in their environment. Plants can increase iron uptake in response to a regulatory transcription factor cascade. Arabidopsis thaliana serves as model plant to identify and characterize iron regulation genes. Here, we show that overexpression of subgroup Ib bHLH transcription factor bHLH039 (39Ox) caused constitutive iron acquisition responses, which resulted in enhanced iron contents in leaves and seeds. Transcriptome analysis demonstrated that 39Ox plants displayed simultaneously gene expression patterns characteristic of iron deficiency and iron stress signaling. Thereby, we could dissect iron deficiency response regulation. The transcription factor FIT, which is required to regulate iron uptake, was essential for the 39Ox phenotype. We provide evidence that subgroup Ib transcription factors are involved in FIT transcriptional regulation. Our findings pose interesting questions to the feedback control of iron homeostasis.
Silver nanowires (AgNW) find use in transparent conductive electrodes with applications in solar cells, touch screens, and wearables. Unprotected AgNW are prone to atmospheric corrosion and lose conductivity over time. Known passivation techniques either require submersion of pre-deposited AgNW in liquid compounds or the modification of AgNW inks prior to deposition, which alters viscosity and complicates deposition. Here, new possibilities for stabilization of pre-deposited AgNW networks without need for submersion are explored. It is demonstrated that AgNW networks can be stabilized either by argon or hydrogen plasma treatment or by solvent vapor annealing with ethanol, methanol, or ethyl acetate. These treatments yielded stable electrical resistance over at least nine weeks, whereas untreated or thermally annealed AgNW layers quickly lost conductivity. The potential of solvent vapor annealing is further explored by demonstrating a new processing technique for stable polymer matrix composites containing AgNW. Co-deposited layers of AgNW with polystyrene microbeads are annealed in ethyl acetate vapor to stabilize the AgNW while at the same time merging polymer beads into a closed film around the AgNW. The resulting composites maintained stable resistance and transmittance for at least seven weeks.