Refine
Document Type
Language
- English (4)
Is part of the Bibliography
- yes (4)
Keywords
Scientific Unit
- Energy Materials (4)
Redox-electrolytes for non-flow electrochemical energy storage: A critical review and best practice
(2019)
Over recent decades, a new type of electric energy storage system has emerged with the principle that the electric charge can be stored not only at the interface between the electrode and the electrolyte but also in the bulk electrolyte by redox activities of the electrolyte itself. Those redox electrolytes are promising for non-flow hybrid energy storage systems, or redox electrolyte-aided hybrid energy storage (REHES) systems; particularly, when they are combined with highly porous carbon electrodes. In this review paper, critical design considerations for the REHES systems are discussed as well as the effective electrochemical characterization techniques. Appropriate evaluation of the electrochemical performance is discussed thoroughly, including advanced analytical techniques for the determination of the electrochemical stability of the redox electrolytes and self-discharge rate. Additionally, critical summary tables for the recent progress on REHES systems are provided. Furthermore, the unique synergistic combination of porous carbon materials and redox electrolytes is introduced in terms of the diffusion, adsorption, and electrochemical kinetics modulating energy storage in REHES systems.
We introduce a high performance hybrid electrochemical energy storage system based on an aqueous electrolyte containing tin sulfate (SnSO4) and vanadyl sulfate (VOSO4) with nanoporous activated carbon. The energy storage mechanism of this system benefits from the unique synergy of concurrent electric double-layer formation, reversible tin redox reactions, and three-step redox reactions of vanadium. The hybrid system showed excellent electrochemical properties such as a promising energy capacity (ca. 75 W h kg-1, 30 W h L-1) and a maximum power of up to 1.5 kW kg-1 (600 W L-1, 250 W m-2), exhibiting capacitor-like galvanostatic cycling stability and a low level of self-discharging rate.
Electrochemical desalination shows promise for ion-selective, energy-efficient water desalination. This work reviews performance metrics commonly used for electrochemical desalination. We provide a step-by-step guide on acquiring, processing, and calculating raw desalination data, emphasizing informative and reliable figures of merit. A typical experiment uses calibrated conductivity probes to relate measured conductivity to concentration. Using a standard electrochemical desalination cell with activated carbon electrodes, we demonstrate the calculation of desalination capacity, charge efficiency, energy consumption, and ion selectivity metrics. We address potential pitfalls in performance metric calculations, including leakage current (charge) considerations and aging of conductivity probes, which can lead to inaccurate results. The relationships between pH, temperature, and conductivity are explored, highlighting their influence on final concentrations. Finally, we provide a checklist for calculating performance metrics and planning electrochemical desalination tests to ensure accuracy and reliability. Additionally, we offer simplified spreadsheet tools to aid data processing, system design, estimations, and upscaling.
In recent decades, a new type of electric energy storage system has emerged with the principle that the electric charge can be stored not only at the interface between the electrode and the electrolyte, but also in the electrolyte by the redox activities of the bulk electrolyte itself. Such redox electrolytes are promising for non-flow energy storage (redox electrolyte aided hybrid energy storage systems, REHES) particularly when they are combined with electrodes made of nanoporous carbon. In this PhD work, I have established a fundamental understanding regarding ion diffusion, process kinetics, and adsorption of redox ions. For that, different REHES systems have been investigated including tetrapropylammonium iodide, zinc iodide, potassium iodide, potassium ferricyanide, vanadyl sulfate, tin sulfate, and tin fluoride. The basic understanding of REHES systems enabled the targeted improvement of the device performance throughout this PhD work. Compared to the energy storage capacity of a conventional (non-redox) electrical double layer capacitor of 4 Wh/kg (ca. 80 F/g), the use of the ZnI2 redox electrolyte yielded significantly higher performance of up to 226 Wh/kg. Furthermore, the specific power was also enhanced from 1.3 kW/kg to 20 kW/kg. As a key conclusion, this PhD work demonstrates the high attractiveness of REHES systems not only from a performance point of view, but also regarding low cost and simplicity of the system.