Refine
Document Type
- Article (8)
Language
- English (8)
Has Fulltext
- yes (8)
Keywords
- Calu-3 cells (1)
- LasB (1)
- PLGA nanocapsules (1)
- RNA release (1)
- TNF alpha inhibition (1)
- aerodyanmic properties (1)
- air interface culture (AIC) (1)
- antibacterial activity (1)
- aspheric drug delivery systems (1)
- azithromycin (1)
Scientific Unit
Copper kills bacteria rapidly by a mechanism that is not yet fully resolved. The antibacterial property of copper has raised interest in its use in hospitals, in place of plastic or stainless steel. On the latter surfaces, bacteria can survive for days or even weeks. Copper surfaces could thus provide a powerful accessory measure to curb nosocomial infections. We here investigated the effect of the copper surface structure on the efficiency of contact killing of Escherichia coli, an aspect which so far has received very little attention. It was shown that electroplated copper surfaces killed bacteria more rapidly than either polished copper or native rolled copper. The release of ionic copper was also more rapid from electroplated copper compared to the other materials. Scanning electron microscopy revealed that the bacteria nudged into the grooves between the copper grains of deposited copper. The findings suggest that, in terms of contact killing, more efficient copper surfaces can be engineered.
Abstract Nanoparticles (NPs) are able to deliver a variety of substances into eukaryotic cells. However, their usage is often hampered by a lack of specificity, leading to the undesired uptake of NPs by virtually all cell types. In contrast to this, yeast is known to be specifically taken up into immune cells after entering the body. Therefore, we investigated the interaction of biodegradable surface-modified poly (lactic-co-glycolic acid) (PLGA) particles with yeast cells to overcome the unspecificity of the particulate carriers. Cells of different Saccharomyces cerevisiae strains were characterized regarding their interaction with PLGA-NPs under isotonic and hypotonic conditions. The particles were shown to efficiently interact with yeast cells leading to stable NP/yeast-complexes allowing to associate or even internalize compounds. Notably, applying those complexes to a co-culture model of HeLa cells and macrophages, the macrophages were specifically targeted. This novel nano-in-micro carrier system suggests itself as a promising tool for the delivery of biologically active agents into phagocytic cells combining specificity and efficiency. This article is protected by copyright. All rights reserved.
One of the critical quality attributes of nanoparticle formulations is drug release. Their release properties should therefore be well characterized with predictive and discriminative methods. However, there is presently still no standard method for the release testing of extended release nanoformulations. Dialysis techniques are widely used in the literature but suffer from severe drawbacks. Burst release of formulations can be masked by slow permeation kinetics of the free drug through the dialysis membrane, saturation in the membrane, and absence of agitation in the membrane. In this study, the release profile of poly(lactic co-glycolic) (PLGA) nanocapsules loaded with all-trans retinoic acid was characterized using an innovative sample and separate set-up, the NanoDis System, and compared to the release profile measured with a dialysis technique. The NanoDis System showed clear superiority over the dialysis method and was able to accurately characterize the burst release from the capsules and furthermore discriminate between different all-trans retinoic acid nanoparticle formulations.
Pulmonary fibrosis, a disabling lung disease, results from the fibrotic transformation of lung tissue. This fibrotic transformation leads to a deterioration of lung capacity, resulting in significant respiratory distress and a reduction in overall quality of life. Currently, the frontline treatment of pulmonary fibrosis remains limited, focusing primarily on symptom relief and slowing disease progression. Bacterial infections with Pseudomonas aeruginosa are contributing to a severe progression of idiopathic pulmonary fibrosis. Phytic acid, a natural chelator of zinc, which is essential for the activation of metalloproteinase enzymes involved in pulmonary fibrosis, shows potential inhibition of LasB, a virulence factor in P. aeruginosa, and mammalian metalloproteases (MMPs). In addition, phytic acid has anti-inflammatory properties believed to result from its ability to capture free radicals, inhibit certain inflammatory enzymes and proteins, and reduce the production of inflammatory cytokines, key signaling molecules that promote inflammation. To achieve higher local concentrations in the deep lung, phytic acid was spray dried into an inhalable powder. Challenges due to its hygroscopic and low melting (25 °C) nature were mitigated by converting it to sodium phytate to improve crystallinity and powder characteristics. The addition of leucine improved aerodynamic properties and reduced agglomeration, while mannitol served as carrier matrix. Size variation was achieved by modifying process parameters and were evaluated by tools such as the Next Generation Impactor (NGI), light diffraction methods, and scanning electron microscopy (SEM). An inhibition assay for human MMP-1 (collagenase-1) and MMP-2 (gelatinase A) allowed estimation of the biological effect on tissue remodeling enzymes. The activity was also assessed with respect to inhibition of bacterial LasB. The formulated phytic acid demonstrated an IC50 of 109.7 µg/mL for LasB with viabilities > 80 % up to 188 µg/mL on A549 cells. Therefore, inhalation therapy with phytic acid-based powder shows promise as a treatment for early-stage Pseudomonas-induced pulmonary fibrosis.
Human respiratory mucus is a biological hydrogel that forms a protective barrier for the underlying epithelium. Modulation of the mucus layer has been employed as a strategy to enhance transmucosal drug carrier transport. However, a drawback of this strategy is a potential reduction of the mucus barrier properties, in particular in situations with an increased exposure to particles. In this study, we investigated the impact of mucus modulation on its protective role. In vitro mucus was produced by Calu-3 cells, cultivated at the air-liquid interface for 21 days and used for further testing as formed on top of the cells. Analysis of confocal 3D imaging data revealed that after 21 days Calu-3 cells secrete a mucus layer with a thickness of 24 ± 6 μm. Mucus appeared to restrict penetration of 500 nm carboxyl-modified polystyrene particles to the upper 5–10 μm of the layer. Furthermore, a mucus modulation protocol using aerosolized N-acetylcysteine (NAC) was developed. This treatment enhanced the penetration of particles through the mucus down to deeper layers by means of the mucolytic action of NAC. These findings were supported by cytotoxicity data, indicating that intact mucus protects the underlying epithelium from particle-induced effects on membrane integrity. The impact of NAC treatment on the protective properties of mucus was probed by using 50 and 100 nm amine-modified and 50 nm carboxyl-modified polystyrene nanoparticles, respectively. Cytotoxicity was only induced by the amine-modified particles in combination with NAC treatment, implying a reduced protective function of modulated mucus. Overall, our data emphasize the importance of integrating an assessment of the protective function of mucus into the development of therapy approaches involving mucus modulation.
The transport of macromolecular drugs such as oligonucleotides into the lungs has become increasingly relevant in recent years due to their high potency. However, the chemical structure of this group of drugs poses a hurdle to their delivery, caused by the negative charge, membrane impermeability and instability. For example, siRNA to reduce tumour necrosis factor alpha (TNF- α) secretion to reduce inflammatory signals has been successfully delivered by inhalation. In order to increase the effect of the treatment, a co-transport of another anti-inflammatory ingredient was applied. Combining curcumin-loaded mesoporous silica nanoparticles in nanostructured cylindrical microparticles stabilized by the layer-by-layer technique using polyanionic siRNA against TNF-α was used for demonstration. This system showed aerodynamic properties suited for lung deposition (mass median aerodynamic diameter of 2.85 ± 0.44 µm). Furthermore, these inhalable carriers showed no acute in vitro toxicity tested in both alveolar epithelial cells and macrophages up to 48 h incubation. Ultimately, TNF- α release was significantly reduced by the particles, showing an improved activity co-delivering both drugs using such a drug-delivery system for specific inhibition of TNF-α in the lungs
Menadione as Antibiotic Adjuvant Against P. aeruginosa: Mechanism of Action, Efficacy and Safety
(2025)
Antibiotic resistance in chronic lung infections caused by Pseudomonas aeruginosa requires alternative approaches to improve antibiotic efficacy. One promising approach is the use of adjuvant compounds that complement antibiotic therapy. This study explores the potential of menadione as an adjuvant to azithromycin against planktonic cells and biofilms of P. aeruginosa, focusing on its mechanisms of action and cytotoxicity in pulmonary cell models. Methods: The effect of menadione in improving the antibacterial and antibiofilm potency of azithromycin was tested against P. aeruginosa. Mechanistic studies in P. aeruginosa and AZMr-E. coli DH5α were performed to probe reactive oxygen species (ROS) production and bacterial membrane disruption. Cytotoxicity of antibacterial concentrations of menadione was assessed by measuring ROS levels and membrane integrity in Calu-3 and A549 lung epithelial cells. Results: Adding 0.5 µg/mL menadione to azithromycin reduced the minimum inhibitory concentration (MIC) by four-fold and the minimum biofilm eradication concentration (MBEC) by two-fold against P. aeruginosa. Adjuvant mechanisms of menadione involved ROS production and disruption of bacterial membranes. Cytotoxicity tests revealed that antibacterial concentrations of menadione (≤64 µg/mL) did not affect ROS levels or membrane integrity in lung cell lines. Conclusions: Menadione enhanced the efficacy of azithromycin against P. aeruginosa while exhibiting a favorable safety profile in lung epithelial cells at antibacterial concentrations. These findings suggest that menadione is a promising antibiotic adjuvant. However, as relevant data on the toxicity of menadione is sparse, further toxicity studies are required to ensure its safe use in complementing antibiotic therapy.
Materials containing imidazole have been used as promising substances in the fields of life sciences, environmental science, and electrochemistry. In this study, tailored core–shell particles that respond to acidic solutions and fluorine-containing hydrophobic anions were synthesized through starved-feed emulsion polymerization. Imidazole, which responds to proton acids and hydrophobic anions, was incorporated as a functional moiety into the shell of the particles. The soft and viscoelastic matrix was composed of the copolymer, poly((n-butyl acrylate)-co-(1-vinylimidazole)), allowing for control of the hydrodynamic diameter of the core–shell particles due to the balance between hydrophilic and hydrophobic properties. The size comparison of monodisperse particles in the colloid state was investigated using dynamic light scattering (DLS) and transmission electron microscopy (TEM). Changes in the glass transition temperature, depending on the copolymer ratio, were calculated using the Fox equation. The particles were melt-sheared after extrusion to produce viscoelastic opal films, arranging the particles into colloidal crystal stacks showing vivid structural colors. The optical features changed in response to acidic solutions and hydrophobic anions and were examined using in situ ultraviolet–visible (UV–vis) spectroscopy. The degree of hydrophilicity of the film was compared through contact angle measurements. The manufactured smart opal film can be applied as an affordable sensor that exhibits optical color changes in response to acidic pH and hydrophobic anions.