Refine
Document Type
- Article (16)
- Doctoral Thesis or Habilitation (1)
Language
- English (17)
Has Fulltext
- yes (17)
Is part of the Bibliography
- yes (17)
Keywords
- antibacterial activity (1)
- battery (1)
- bending strength (1)
- contact killing (1)
- copper surfaces (1)
- electrochemistry (1)
- electrodeposition (1)
- energy storage (1)
- hybrid material (1)
- internode (1)
Scientific Unit
Copper kills bacteria rapidly by a mechanism that is not yet fully resolved. The antibacterial property of copper has raised interest in its use in hospitals, in place of plastic or stainless steel. On the latter surfaces, bacteria can survive for days or even weeks. Copper surfaces could thus provide a powerful accessory measure to curb nosocomial infections. We here investigated the effect of the copper surface structure on the efficiency of contact killing of Escherichia coli, an aspect which so far has received very little attention. It was shown that electroplated copper surfaces killed bacteria more rapidly than either polished copper or native rolled copper. The release of ionic copper was also more rapid from electroplated copper compared to the other materials. Scanning electron microscopy revealed that the bacteria nudged into the grooves between the copper grains of deposited copper. The findings suggest that, in terms of contact killing, more efficient copper surfaces can be engineered.
Mechanical properties of plants and underlying structure-property relationships are important for agricultural purposes as well as for biomimetic concepts. In this study, the effect of mechanical stimulation on morphology and bending properties of the stalk was investigated for Sorghum bicolor (Poaceae), a widely used drought-tolerant biomass grass. An experimental set-up allowing for defined growth and mechanical perturbation (flexing) during a defined growth period was designed. Mechanical properties of individual internodes of the stalk were determined by three-point bending tests. We found that the three investigated lines showed differences in their general bending strength in the non-stimulated condition. However, similar high range of bending strength values was measured for all plant lines after they underwent the mechanical stimulation procedure. The anatomy of internode cross-sections was examined to evaluate structure-property relationships. An increased thickness of the outer sclerenchymatous tissue was observed for internodes with higher bending strength values. Dried internodes fail under lower strains but showed higher bending strength. These findings show that mechanosensitivity in sorghum is dependent on genetic as well as environmental factors. The experimental system presented here offers new straight-forward possibilities for S. bicolor line selection for applications requiring mechanical strength of the stalk.
We present a study on the pseudocapacitive properties of birnessite-type MnO 2 grafted on highly graphitized onion-like carbon (OLC/MnO 2 ). In a three-electrode setup, we evaluated two different substrates, namely a platinum disc and nickel foam. The OLC/MnO 2 nanohybrid exhibited a large specific capacitance (C sp ) of 295 and 323 F g -1 (at 1 A g -1 ) for the Pt disc and Ni foam, respectively. In addition, the Ni foam substrate exhibited much higher rate capability (power density) than the Pt disc. A symmetrical two-electrode device, fabricated with the Ni foam, showed a large C sp of 254 F g -1 , a specific energy density of 5.6 W h kg -1 , and a high power density of 74.8 kW kg -1 . These values have been the highest for onion-based electrodes so far. The device showed excellent capacity retention when subjected to voltage-holding (floating) experiments for 50 h. In addition, the device showed a very short time constant ([small tau] = 40 ms). This high rate handling ability of the OLC/MnO 2 nanohybrid, compared to literature reports, promises new opportunities for the development of aqueous-based pseudocapacitors.
This study presents electrospun niobium carbide/carbon (NbC/C) hybrid nanofibers, with an average diameter of 69 +/- 30 nm, as a facile precursor to derive either highly nanoporous niobium carbide-derived carbon (NbC-CDC) fibers for supercapacitor applications or niobium pentoxide/carbon (Nb2O5/C) hybrid fibers for battery-like energy storage. In all cases, the electrodes consist of binder-free and free-standing nanofiber mats that can be used without further conductive additives. Chlorine gas treatment conformally transforms NbC nanofiber mats into NbC-CDC fibers with a specific surface area of 1508 m2 g-1. These nanofibers show a maximum specific energy of 19.5 W h kg-1 at low power and 7.6 W h kg-1 at a high specific power of 30 kW kg-1 in an organic electrolyte. CO2 treatment transforms NbC into T-Nb2O5/C hybrid nanofiber mats that provide a maximum capacity of 156 mA h g-1. The presence of graphitic carbon in the hybrid nanofibers enabled high power handling, maintaining 50% of the initial energy storage capacity at a high rate of 10 A g-1 (64 C-rate). When benchmarked for an asymmetric full-cell, a maximum specific energy of 86 W h kg-1 was obtained. The high specific power for both systems, NbC-CDC and T-Nb2O5/C, resulted from the excellent charge propagation in the continuous nanofiber network and the high graphitization of the carbon structure.
Fluid catalytic cracking (FCC), which currently accounts for half of the worldwide petroleum refining efforts, relies on catalytic, aluminosilicate zeolite particles which slowly deactivate. As of yet, this FCC catalyst residue (FC3R) has no commercial outlet, resulting in abundant amounts of landfill-destined refuse. However, this overlooked waste has the right ingredients for the synthesis of some of today's emerging nanomaterials. High-carbon FC3R, sourced from a Uruguayan refinery, was identified as faujasite particles encased in graphitic carbon shells. We show that pulsed laser ablation of raw FC3R produces simultaneous deposition of single-wall carbon nanotubes and silica nanowires through vapour/solid-liquid-solid self-assembly in distinct zones of an oven-laser apparatus. This is an extreme revalorisation and provides a new untapped resource for research and applications in C- and Si-based nanomaterials and mesoscopic physics.
Performance stability in capacitive deionization (CDI) is particularly challenging in systems with a high amount of dissolved oxygen due to rapid oxidation of the carbon anode and peroxide formation. For example, carbon electrodes show a fast performance decay, leading to just 15% of the initial performance after 50 CDI cycles in oxygenated saline solution (5 mM NaCl). We present a novel strategy to overcome this severe limitation by employing nanocarbon particles hybridized with sol-gel-derived titania. In our proof-of-concept study, we demonstrate very stable performance in low molar saline electrolyte (5 mM NaCl) with saturated oxygen for the carbon/metal oxide hybrid (90% of the initial salt adsorption capacity after 100 cycles). The electrochemical analysis using a rotating disk electrode (RDE) confirms the oxygen reduction reaction (ORR) catalytic effect of FW200/TiO2, preventing local peroxide formation by locally modifying the oxygen reduction reaction.
A new approach to produce carbide-derived carbon nanospheres of 20-200 nm in diameter based on a novel soft-templating technique is presented. Platinum catalysis is used for the cross-linking of liquid (allylhydrido)polycarbosilane polymer chains with para-divinylbenzene within oil-in-water miniemulsions. Quantitative implementation of the pre-ceramic polymer can be achieved allowing precise control over the resulting materials. After pyrolysis and high-temperature chlorine treatment, resulting particles offer ideal spherical shape, very high specific surface area (up to 2347 m 2 /g), and large micro/mesopore volume (up to 1.67 cm 3 /g). The internal pore structure of the nanospheres is controllable by the composition of the oil phase within the miniemulsions. The materials are highly suitable for electrochemical double-layer capacitors with high specific capacitances in aqueous 1 M Na 2 SO 4 solution (110 F/g) and organic 1 M tetraethylammonium tetrafluoroborate in acetonitrile (130 F/g).
In this study, we explore carbon onions (diameter below 10 nm), for the first time, as a substrate material for lithium sulfur cathodes. We introduce several scalable synthesis routes to fabricate carbon onion-sulfur hybrids by adopting in situ and melt diffusion strategies with sulfur fractions up to 68 mass%. The conducting skeleton of agglomerated carbon onions proved to be responsible for keeping active sulfur always in close vicinity to the conducting matrix. Therefore, the hybrids are found to be efficient cathodes for Li-S batteries, yielding 97-98% Coulombic efficiency over 150 cycles with a slow fading of the specific capacity (ca. 660 mA h g-1 after 150 cycles) in long term cycle test and rate capability experiments.
Manganese oxide presents very promising electrochemical properties as an electrode material in supercapacitors, but there remain important open questions to guide further development of the complex manganese oxide/carbon/electrolyte system. Our work addresses specifically the influence of carbon ordering and the difference between outer and inner porosity of carbon particles for the application in aqueous 1 M Na2SO4 and 1 M LiClO4 in acetonitrile. Birnessite-type manganese oxide was hydrothermally hybridized on two kinds of carbon onions with only outer surface area and different electrical conductivity, and conventional activated carbon with a high inner porosity. Carbon onions with a high degree of carbon ordering, high conductivity, and high outer surface area were identified as the most promising material, yielding 179 F g-1. Pore blocking in activated carbon yields unfavorable electrochemical performances. The highest specific energy of 16.4 W h kg-1 was measured for a symmetric full-cell arrangement of manganese oxide coated high temperature carbon onions in the organic electrolyte. High stability during 10 000 cycles was achieved for asymmetric full-cells, which proved as a facile way to enhance the electrochemical performance stability.
Carbon onions are a relatively new member of the carbon nanomaterials family. They consist of multiple concentric fullerene-like carbon shells which are highly defective and disordered. Due to their small size of typically below 10 nm, the moderate surface area, and high conductivity they were used for supercapacitor applications. As electrode material, carbon onions provide fast charge/discharge rates resulting in high specific power but present comparable low specific energy. They improve the performance of activated carbon electrodes as conductive additive and show suitable properties as substrate for redox-active materials. This review provides a critical discussion of the electrochemical properties of different types of carbon onions as electrode material. It also compares general advantages and disadvantages of different carbon onion synthesis methods. The structure, physical and chemical properties of carbon onions, in particular nanodiamond-derived carbon onions, are described with emphasis on those parameters especially important for electrochemical energy storage systems, including among others structure, conductivity, and porosity. Although the primary focus of current research is on electrode materials for supercapacitors, the use of carbon onions as conductive additive for activated carbon and electro-active polymers, as well as substrate for redox-active species is also discussed.