Refine
Document Type
Language
- English (4)
Is part of the Bibliography
- yes (4)
Keywords
- nanowires (2)
- CVD (1)
- biocompatibility (1)
- gradient (1)
- laser treatment (1)
- nanocomposite (1)
- stem Cell (1)
- topography (1)
By decomposing a molecular precursor we fabricated a novel surface based on an aluminium/ aluminiumoxide composite incorporating nanotopography gradient to address high-throughput and fast analysis method for studying stem cell differentiation by nanostructures. Depending on the topography of the nanostructures, mesenchymal stem cells exhibit a diverse proliferation and differentiation behavior.
A novel synthesis of a nanostructured cell adhesive surface is investigated for future stent developments. One-dimensional (1D) Al 2 O 3 nanostructures were prepared by chemical vapor deposition of a single source precursor. Afterwards, recombinant filamentous bacteriophages which display a short binding motif with a cell adhesive peptide (RGD) on p3 and p8 proteins were immobilized on these 1D Al 2 O 3 nanostructures by a simple dip-coating process to study the cellular response of human endothelial EA hy.926. While the cell density decreased on as-deposited 1D Al 2 O 3 nanostructures, we observed enhanced cell proliferation and cell-cell interaction on recombinant phage overcoated 1D Al 2 O 3 nanostructures. The recombinant phage overcoating also supports an isotropic cell spreading rather than elongated cell morphology as we observed on as-deposited Al 2 O 3 1D nanostructures.
Thrombosis and bacterial infection are major problems in cardiovascular implants. Here we demonstrated that a superhydrophobic surface composed of poly(bis(2,2,2-trifluoroethoxy)phosphazene) (PTFEP)–Al2O3 hybrid nanowires (NWs) is effective to reduce both platelet adhesion/activation and bacterial adherence/colonization. The proposed approach allows surface modification of cardiovascular implants which have 3D complex geometries.
Recently, one-dimensional (1D) nanostructures have attracted considerable interest of nanoscience studies as well as nanotechnology applications. Especially 1D hetero-structural nanowires with a combination of two different materials, for instance metal/metal oxide composites, hold a great potential for various photonic and electronic applications. Thus, Al·Al2O3 core-shell nanowires, which were firstly reported by Veith et al., form an interesting class of such hetero-nanostructures. This thesis describes the preparation of functional surfaces composed of 1D nanostructures by CVD of a (tBuOAlH2)2 [bis(tert-butoxyaluminum dihydride)] precursor and laser treatment of such structures. Firstly, main attention is given to understand the underlying mechanisms controlling the 1D growth of Al·Al2O3 nanostructures. By applying systematically different deposition temperatures and flow rates, various nanostructures were synthesized. At high deposition temperatures chaotic Al·Al2O3 nanowires form, whereas at low deposition temperatures worm- and loop-like nanostructures are achieved. A new mask-less local deposition method, named selective CVD (SCVD), is introduced by selective heating of the substrate with electro magnetic induction. A controlled thermal gradient leads to the observation of stepwise 1D growth of nanostructures. As a continuation the of the local deposition approach,an LCVD system has been designed and fabricated to show the possibility to grow 1D complex structures. α-Al2O3 layers were synthesized by laser induced heating of deposited Al·Al2O3 nanowires. In particular, two laser processing approaches were investigated: continuous wave (CW) laser and pulsed laser treatments. CW laser treatment is useful to produce dense and fully crystalline α-Al2O3 layers which may be employed as hard and protective coatings. Pulsed laser treatment produces a large variety of nanostructures (nanopores, nanoprotrusions, nanospheres etc.) of Al2O3 which is interesting for studying cell-surface interactions. Micro /nanostructured surfaces prepared by direct deposition of (tBuOAlH2)2 and laser treatment were tested for biocompatibility. Jurkat cells seem to adhere selectively on Al·Al2O3 nanowires which may lead to applications in cancer diagnosis and therapy. Laser treated Al·Al2O3 layers exhibit a better biocompatibility for normal human dermal fibroblast (NHDF) cells. In addition, a preliminary study on neurons showed that Al·Al2O3 nanowires provide enhanced cellular adhesion and growth which can be interesting for various applications in medical fields as well as in biosciences.