Refine
Document Type
- Article (3)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- yes (3)
Keywords
- Diffractive optical elements (1)
- Effective refractive index (1)
- Femtosecond laser writing (1)
- Gd2O3:EU (1)
- Optical design (1)
- Optical materials (1)
- SiO2 (1)
- TiO2 (1)
- Y2O3:EU (1)
- anti-reflective coating (1)
Scientific Unit
- Optical Materials (3)
- IZI (1)
- Physical Analytics (1)
There is great technological interest in elucidating the effect of particle size on the luminescence efficiency of doped rare earth oxides. This study demonstrates unambiguously that there is a size effect and that it is not dependent on the calcination temperature. The Y2O3:Eu and Gd2O3:Eu particles used in this study were synthesized using wet chemistry to produce particles ranging in size between 7 nm and 326 nm and a commercially available phosphor. These particles were characterized using three excitation methods: UV light at 250 nm wavelength, electron beam at 10 kV, and X-rays generated at 100 kV. Regardless of the excitation source, it was found that with increasing particle diameter there is an increase in emitted light. Furthermore, dense particles emit more light than porous particles. These results can be explained by considering the larger surface area to volume ratio of the smallest particles and increased internal surface area of the pores found in the large particles. For the small particles, the additional surface area hosts adsorbates that lead to non-radiative recombination, and in the porous particles, the pore walls can quench fluorescence. This trend is valid across calcination temperatures and is evident when comparing particles from the same calcination temperature.
Anti-reflective (AR) single layer of silica-titania (SiO2-TiO2) coatings were obtained from sols containing pyromellitic dianhydride (PMDA) derivatives and Ti and Si precursors on glass substrate by dip-coating method. The coatings showed very high optical quality and the transmission was improved to up to 98.5%. Furthermore, the coatings also presented good mechanical stability.
Optical polymers cover only a rather narrow range of optical properties. This is a limiting factor for the design of polymer-based optical systems such as smartphone cameras. Moreover, it also poses a problem for femtosecond two-photon lithography, which is a state-of-the-art technology to 3D print high-quality optics from photopolymers. To overcome the limitations of conventional polymers, we introduce nano-inks based on the commonly used photopolymers IP-DIP and IP-S as polymer matrix and zirconium dioxide (ZrO2) nanoparticles. We show that the refractive index and dispersion of these nano-inks can be purposefully tailored by varying the constituent materials and the volume fraction of the nanoparticles. Furthermore, we demonstrate the suitability of our nano-inks for optical applications by 3D printing single micro-lenses and a multi-material achromatic Fraunhofer doublet. Our findings confirm that nanocomposites expand the range of optical properties that are accessible for polymer-based systems and allow for the design of tailored optical materials.