Refine
Has Fulltext
- yes (6)
Is part of the Bibliography
- yes (6)
Keywords
- Development (1)
- Gd2O3:EU (1)
- Microstructures (1)
- Two-photon polymerization (1)
- Y2O3:EU (1)
- cathodoluminescence (CL) (1)
- direct laser writing (1)
- fluorescence (1)
- hydrogel extrusion printing (1)
- hydrogel waveguide (1)
Scientific Unit
- Dynamic Biomaterials (1)
- Functional Microstructures (2)
- IZI (1)
- Innovative Electron Microscopy (2)
- Optical Materials (6)
- Physical Analytics (1)
Ein am INM entwickeltes Verfahren zur lichtinduzierten Silberabscheidung sollte verwendet werden, um Mikro- und Submikrostrukturen mit optischer Funtionalität für photonische Bauelemente herzustellen. Unter Ausnutzung von Effekten der Oberflächenplasmonenresonanz sollten dabei insbesondere diffraktive Elemente und Wellenleiter gezeigt werden, um daraus eine Plattform für unterschiedliche Anwendungen, wie z.B. optische Sicherheitsmerkmale, aber auch integrierte Optik oder Biosensoren zu entwickeln. Das erwähnte Verfahren beruht auf der durch UV-Licht initiierten Zersetzung eines gelösten Silberkomplexes an einer mit photokatalytischen Anatas-Nanopartikeln belegten Oberfläche. Hierdurch wird unlösliches elementares Silber freigesetzt, das sich am Ort der Belichtung niederschlägt. Diese Silberabscheidung erfolgt zunächst in Form kolloidaler Silbernanopartikel, die mit zunehmender Belichtungsdosis zu leitfähigen Silberflächen zusammenwachsen können. Durch örtliche Modulation der Lichtverteilung kann die Verteilung des Silbers auf der photokatalytischen Grenzfläche mit beugungsbegrenzter Auflösung strukturiert werden. In diesem Vorhaben sollte primär der kolloidale Zustand genutzt werden. Edelmetallkolloide zeigen eine charakteristische Oberflächenplasmonenresonanz, die sich sowohl in einer starken Absorption und Lichtstreuung bei der Resonanzfrequenz als auch in einer Änderung des Brechungsindex des aus kolloidalen Partikeln und der umgebebenden Matrix bestehenden Kompositmaterials äußert. Die durch Strukturierung der Silberverteilung erreichte örtliche Modulation der optischen Materialeigenschaften sollte demnach die Erzeugung photonischer Bauelemente wie z.B. optischer Beugungsgitter erlauben. Da die Änderung des Brechungsindex auch Frequenzbereiche fernab der eigentlichen Resonanzfrequenz betrifft, in denen die durch die Resonanz bedingte Absorption gering ist, sollten auch indexgeführte planare Welleneleiter ("photonische Wellenleiter") auf diesem Weg möglich werden. Zudem sollte die Option, auch strukturierte leitfähige Flächen herzustellen, die Integration mit plasmonischen Wellenleitern erlauben. Das Ziel dieses Vorhabens bestand in der Realisierung der oben skiziierten Möglichkeiten, um die Grundlagen einer neuen Technologieplattform zur Herstellung photonischer Bauelemente zu schaffen. Neben kolloidbasierten Beugungsgittern sollten auch photonische und plasmonische Wellenleiter gezeigt werden und auf dieser Basis Prototypen einzelner anwendungsbezogener Devices hergestellt werden.
There is great technological interest in elucidating the effect of particle size on the luminescence efficiency of doped rare earth oxides. This study demonstrates unambiguously that there is a size effect and that it is not dependent on the calcination temperature. The Y2O3:Eu and Gd2O3:Eu particles used in this study were synthesized using wet chemistry to produce particles ranging in size between 7 nm and 326 nm and a commercially available phosphor. These particles were characterized using three excitation methods: UV light at 250 nm wavelength, electron beam at 10 kV, and X-rays generated at 100 kV. Regardless of the excitation source, it was found that with increasing particle diameter there is an increase in emitted light. Furthermore, dense particles emit more light than porous particles. These results can be explained by considering the larger surface area to volume ratio of the smallest particles and increased internal surface area of the pores found in the large particles. For the small particles, the additional surface area hosts adsorbates that lead to non-radiative recombination, and in the porous particles, the pore walls can quench fluorescence. This trend is valid across calcination temperatures and is evident when comparing particles from the same calcination temperature.
Two-dimensional photonic structures such as nanostructured pillar gratings are useful for various applications including wave coupling, diffractive optics, and security features. Two-photon lithography facilitates the generation of such nanostructured surfaces with high precision and reproducibility. In this work, we report on nanopillar diffraction gratings fabricated by two-photon lithography with various laser powers close to the polymerization threshold of the photoresist. As a result, defect-free arrays of pillars with diameters down to 184 nm were fabricated. The structure sizes were analyzed by scanning electron microscopy and compared to theoretical predictions obtained from Monte Carlo simulations. The optical reflectivities of the nanopillar gratings were analyzed by optical microscopy and verified by rigorous coupled-wave simulations.
Natural functional surfaces often rely on unique nano- and micropatterns. To mimic such surfaces successfully, patterning techniques are required that enable the fabrication of three-dimensional structures at the nanoscale. It has been reported that two-photon polymerization (TPP) is a suitable method for this. However, polymer structures fabricated by TPP often tend to shrink and to collapse during the fabrication process. In particular, delicate structures suffer from their insufficient mechanical stability against capillary forces which mainly arise in the fabrication process during the evaporation of the developer and rinsing liquids. Here, we report a modified development approach, which enables an additional UV-treatment to post cross-link created structures before they are dried. We tested our approach on nanopillar arrays and microscopic pillar structures mimicking the moth-eye and the gecko adhesives, respectively. Our results indicate a significant improvement of the mechanical stability of the polymer structures, resulting in fewer defects and reduced shrinkage of the structures.
Cu(ln,Ga)Se2 (CIGS) ist ein Material für Dünnschicht-Solarzellen, mit dem Wirkungsgrade erreicht werden können, die nur wenig unter denen kristalliner Silizium-Solarzellen liegen. CIGS-Dünnschichtmodule auf Glassubstraten sind seit einigen Jahren erfolgreich auf dem Markt. Die Verwendung von Folienmaterial als Substrat verspricht jedoch gegenüber Glas einige Vorteile, einerseits auf der Seite der Herstellungskosten, die durch kontinuierlich von Rolle zu Rolle arbeitende Verfahren deutlich gesenkt werden könnten, andererseits durch eine Erweiterung des Spektrums möglicher Anwendungen, bedingt durch Flexibilität und geringeres Gewicht.
Bedingt durch die hohen Temperaturen des CIGS-Herstellungsprozess kommen als Substrat eigentlich nur Metallfolien in Betracht. Das einzige Polymermaterial, das sich (mit starken Einschränkungen) eignet, ist recht teures Polyimid. Metallfolien sind aber entweder ebenfalls recht teuer (Kupfer, Titan) oder aber eine Quelle für Ionen, die in den CIGS-Absorber hineindiffundieren und die Zelleneffizienz beeinträchtigen (Stahl- oder Aluminiumfolie).[...]
Side-emitting optical fibers allow light to be deliberately outcoupled along the fiber. Introducing a customized side-emission profile requires modulation of the guiding and emitting properties along the fiber length, which is a particular challenge in continuous processing of soft waveguides. In this work, it is demonstrated that multimaterial extrusion printing can generate hydrogel optical fibers with tailored segments for light-side emission. The fibers are based on diacrylated Pluronic F-127 (PluDA). 1 mm diameter fibers are printed with segments of different optical properties by switching between a PluDA waveguiding ink and a PluDA scattering ink containing nanoparticles. The method allows the fabrication of fibers with segment lengths below 500 microns in a continuous process. The length of the segments is tailored by varying the switching time between inks during printing. Fibers with customized side-emission profiles along their length are presented. The functionality of the printed fibers is demonstrated by exciting fluorescence inside a surrounding 3D hydrogel. The presented technology and material combination allow unprecedented flexibility for designing soft optical fibers with customizable optical properties using simple processes and a medical material. This approach can be of interest to improve illumination inside tissues for photodynamic therapy (PDT).