Refine
Document Type
- Article (4)
Language
- English (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- yes (4)
Keywords
- nanoparticles (3)
- squalene (2)
- biofilm inhibition (1)
- drug delivery (1)
- follicular delivery (1)
- hair follicle (1)
- interfollicular delivery (1)
- invivo allergic dermatitis mous model (1)
- pegylated (1)
- protein-interaction (1)
Scientific Unit
Pseudomonas aeruginosa (PA) infections can be notoriously difficult to treat and are often accompanied by the development of antimicrobial resistance (AMR). Quorum sensing inhibitors (QSI) acting on PqsR (MvfR) – a crucial transcriptional regulator serving major functions in PA virulence – can enhance antibiotic efficacy and eventually prevent the AMR. An integrated drug discovery campaign including design, medicinal chemistry-driven hit-to-lead optimization and in-depth biological profiling of a new QSI generation is reported. The QSI possess excellent activity in inhibiting pyocyanin production and PqsR reporter-gene with IC50 values as low as 200 and 11 × 10−9 m, respectively. Drug metabolism and pharmacokinetics (DMPK) as well as safety pharmacology studies especially highlight the promising translational properties of the lead QSI for pulmonary applications. Moreover, target engagement of the lead QSI is shown in a PA mucoid lung infection mouse model. Beyond that, a significant synergistic effect of a QSI-tobramycin (Tob) combination against PA biofilms using a tailor-made squalene-derived nanoparticle (NP) formulation, which enhance the minimum biofilm eradicating concentration (MBEC) of Tob more than 32-fold is demonstrated. The novel lead QSI and the accompanying NP formulation highlight the potential of adjunctive pathoblocker-mediated therapy against PA infections opening up avenues for preclinical development.
Tofacitinib (TFB), a Janus kinase inhibitor, has shown excellent success off-label in treating various dermatological diseases, especially alopecia areata (AA). However, TFB’s safe and targeted delivery into hair follicles (HFs) is highly desirable due to its systemic adverse effects. Nanoparticles (NPs) can enhance targeted follicular drug delivery and minimize interfollicular permeation and thereby reduce systemic drug exposure. In this study, we report a facile method to assemble the stable and uniform 240 nm TFB loaded squalenyl derivative (SqD) nanoparticles (TFB SqD NPs) in aqueous solution, which allowed an excellent loading capacity (LC) of 20%. The SqD NPs showed an enhanced TFB delivery into HFs compared to the aqueous formulations of plain drug in an ex vivo pig ear model. Furthermore, the therapeutic efficacy of the TFB SqD NPs was studied in a mouse model of allergic dermatitis by ear swelling reduction and compared to TFB dissolved in a non-aqueous mixture of acetone and DMSO (7:1 v/v). Whereas such formulation would not be acceptable for use in the clinic, the TFB SqD NPs dispersed in water illustrated a better reduction in inflammatory effects than plain TFB’s aqueous formulation, implying both encouraging good in vivo efficacy and safety. These findings support the potential of TFB SqD NPs for developing a long-term topical therapy of AA.
Abstract Elimination of pulmonary Pseudomonas aeruginosa (PA) infections is challenging to accomplish with antibiotic therapies, mainly due to resistance mechanisms. Quorum sensing inhibitors (QSIs) interfering with biofilm formation can thus complement antibiotics. For simultaneous and improved delivery of both active agents to the infection sites, self-assembling nanoparticles of a newly synthesized squalenyl hydrogen sulfate (SqNPs) were prepared. These nanocarriers allowed for remarkably high loading capacities of hydrophilic antibiotic tobramycin (Tob) and a novel lipophilic QSI at 30 % and circa 10 %, respectively. The drug-loaded SqNPs showed improved biofilm penetration and enhanced efficacy in relevant biological barriers (mucin/human tracheal mucus, biofilm), leading to complete eradication of PA biofilms at circa 16-fold lower Tob concentration than Tob alone. This study offers a viable therapy optimization and invigorates the research and development of QSIs for clinical use.
Limited drug loading capacity (LC), mostly below 5% w/w, is a significant drawback of nanoparticulate drug delivery systems (DDS). Squalenoylation technology, which employs bioconjugation of squalenyl moiety and drug, allows self-assemble of nanoparticles (NPs) in aqueous media with significantly high LC (>30% w/w). The synthesis and particle preparation of squalenoylated prodrugs are, however, not facile for molecules with multiple reactive groups. Taking a different approach, we describe the synthesis of amphiphilic squalenyl derivatives (SqDs) as well as the physicochemical and biopharmaceutical characterizations of their self-assembled NPs as DDSs. The SqDs included in this study are (i) cationic squalenyl diethanolamine (ii) PEGylated SqD (PEG 750 Da), (iii) PEGylated SqD (PEG 3,000 Da), and (iv) anionic squalenyl hydrogen sulfate. All four SqDs self-assemble into NPs in a size range from 100 to 200 nm in an aqueous solution. Furthermore, all NP derivatives demonstrate appropriate biocompatibility and adequate colloidal stability in physiological relevant pH environments. The mucoprotein binding of PEGylated NPs is reduced compared to the charged NPs. Most importantly, this technology allows excellent LC (at maximum of 45% w/w) of a wide range of multifunctional compounds, varying in physicochemical properties and molecular weight. Interestingly, the drug release profile can be tuned by different loading methods. In summary, the SqD-based NPs appear as versatile drug delivery platforms.