Refine
Document Type
- Article (2)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- yes (2)
Keywords
- hearing aids (2)
- EEG (1)
- acoustic signal processing (1)
- acoustics (1)
- advantageous effects (1)
- auditory evoked potentials (1)
- auditory system (1)
- behind-the-ear hearing aids (1)
- clinical trial (1)
- computational tinnitus model (1)
Scientific Unit
- Fellow (1)
Recent work has shown that sharp spectral edges in acoustic stimuli might have advantageous effects in the treatment of tonal tinnitus. In the course of this paper, we evaluate the long-term effects of spectrally notched hearing aids on the subjective tinnitus distress. By merging recent experimental work with a computational tinnitus model, we modified the commercially available behind-the-ear hearing aids so that a frequency band of 0.5 octaves, centered on the patient's individual tinnitus frequency, was blocked out. Those hearing aids employ a steep notch filter that filters environmental sounds to suppress the tinnitus-related changes in neural firing by lateral inhibition. The computational model reveals a renormalization of pathologically increased neural response reliability and synchrony in response to spectrally modified input. The target group, fitted with spectrally notched hearing aids, was matched with a comparable control group, fitted with standard hearing aids of the same type but without a notch filter. We analyze the subjective self-assessment by tinnitus questionnaires, and we monitor the objective distress correlates in auditory evoked response phase data. Both, subjective and objective results show a noticeable trend of a larger therapeutic benefit for notched hearing correction.
In this study, we propose a novel estimate of listening effort using electroencephalographic data. This method is a translation of our past findings, gained from the evoked electroencephalographic activity, to the oscillatory EEG activity. To test this technique, electroencephalographic data from experienced hearing aid users with moderate hearing loss were recorded, wearing hearing aids. The investigated hearing aid settings were: a directional microphone combined with a noise reduction algorithm in a medium and a strong setting, the noise reduction setting turned off, and a setting using omnidirectional microphones without any noise reduction. The results suggest that the electroencephalographic estimate of listening effort seems to be a useful tool to map the exerted effort of the participants. In addition, the results indicate that a directional processing mode can reduce the listening effort in multitalker listening situations.