Refine
Document Type
- Article (2)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- yes (2)
Keywords
- stiffness (2)
- AFM (1)
- CD4+ T cell (1)
- Peak Force QNM (1)
- T cells (1)
- calcium (1)
- elasticity mapping (1)
- immunological synapse (1)
- lamellipodia (1)
Scientific Unit
- Fellow (2)
T cells are activated by target cells via an intimate contact, termed immunological synapse (IS). Cellular mechanical properties, especially stiffness, are essential to regulate cell functions. However, T cell stiffness at a subcellular level at the IS still remains largely elusive. In this work, we established an atomic force microscopy (AFM)-based elasticity mapping method on whole T cells to obtain an overview of the stiffness with a resolution of ~60 nm. Using primary human CD4+ T cells, we show that when T cells form IS with stimulating antibody-coated surfaces, the lamellipodia are stiffer than the cell body. Upon IS formation, T cell stiffness is enhanced both at the lamellipodia and on the cell body. Chelation of intracellular Ca2+ abolishes IS-induced stiffening at the lamellipodia but has no influence on cell-body-stiffening, suggesting different regulatory mechanisms of IS-induced stiffening at the lamellipodia and the cell body.
CD4+ T cells are essential players in orchestrating the specific immune response against intracellular pathogens, and in inhibiting tumor development in an early stage. The activation of T cells is triggered by engagement of T cell receptors (TCRs). Here, CD3 and CD28 molecules are key factors, (co)stimulating signaling pathways essential for activation and proliferation of CD4+ T cells. T cell activation induces the formation of a tight mechanical bond between T cell and target cell, the so-called immunological synapse (IS). Due to this, mechanical cell properties, including stiffness, play a significant role in modulating cell functions. In the past, many approaches were made to investigate mechanical properties of immune cells, including micropipette aspiration, microplate-based rheometry, techniques based on deformation during cytometry, or the use of optical tweezers. However, the stiffness of T lymphocytes at a subcellular level at the IS still remains largely elusive.With this protocol, we introduce a method based on atomic force microscopy (AFM), to investigate the local cellular stiffness of T cells on functionalized glass/Polydimethylsiloxan (PDMS) surfaces, which mimicks focal stimulation of target cells inducing IS formation by T cells. By applying the peak force nanomechanical mapping (QNM) technique, cellular surface structures and the local stiffness are determined simultaneously, with a resolution of approximately 60 nm. This protocol can be easily adapted to investigate the mechanical impact of numerous factors influencing IS formation and T cell activation.Graphical abstract: Overview of the experimental workflow.Individual experimental steps are shown on the left, hands on and incubation times for each step are shown right.