Refine
Year of publication
- 2023 (1)
Document Type
- Article (1)
Language
- English (1)
Has Fulltext
- yes (1)
Is part of the Bibliography
- yes (1)
Keywords
Scientific Unit
- Energy Materials (1)
Sodium ion insertion plays a critical role in developing robust sodium-ion technologies (batteries and hybrid supercapacitors). Diffusion coefficient values of sodium (DNa+) in tin phosphide between 0.1 V and 2.0 V vs. Na/Na+ are systematically determined by galvanostatic intermittent titration technique (GITT), electrochemical impedance spectroscopy (EIS), and potentiostatic intermittent titration technique (PITT). These values range between 4.55 × 10−12 cm2 s−1 and 1.94 × 10−8 cm2 s−1 and depend on the insertion/de-insertion current and the thickness of the electrode materials. Additionally, DNa+ values differ between the first and second cation insertion because of the solid electrolyte interface (SEI) formation. DNa+ vs. insertion potential alters non-linearly in a “W” form due to the strong interactions of Na+ with tin phosphide particles. The results reveal that GITT is a more appropriate electrochemical technique than PITT and EIS for evaluating DNa+ in tin phosphide.