Refine
Document Type
- Article (2)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- yes (2)
Scientific Unit
- Energy Materials (2)
In this study, we explore carbon onions (diameter below 10 nm), for the first time, as a substrate material for lithium sulfur cathodes. We introduce several scalable synthesis routes to fabricate carbon onion-sulfur hybrids by adopting in situ and melt diffusion strategies with sulfur fractions up to 68 mass%. The conducting skeleton of agglomerated carbon onions proved to be responsible for keeping active sulfur always in close vicinity to the conducting matrix. Therefore, the hybrids are found to be efficient cathodes for Li-S batteries, yielding 97-98% Coulombic efficiency over 150 cycles with a slow fading of the specific capacity (ca. 660 mA h g-1 after 150 cycles) in long term cycle test and rate capability experiments.
We introduce a high performance hybrid electrochemical energy storage system based on an aqueous electrolyte containing tin sulfate (SnSO4) and vanadyl sulfate (VOSO4) with nanoporous activated carbon. The energy storage mechanism of this system benefits from the unique synergy of concurrent electric double-layer formation, reversible tin redox reactions, and three-step redox reactions of vanadium. The hybrid system showed excellent electrochemical properties such as a promising energy capacity (ca. 75 W h kg-1, 30 W h L-1) and a maximum power of up to 1.5 kW kg-1 (600 W L-1, 250 W m-2), exhibiting capacitor-like galvanostatic cycling stability and a low level of self-discharging rate.