Refine
Document Type
- Article (7)
Language
- English (7)
Has Fulltext
- yes (7)
Is part of the Bibliography
- yes (7)
Keywords
- Cavity collapse (1)
- Cupped microstructures (1)
- Rough substrates (1)
- Suction (1)
- Underwater adhesion (1)
- bioinspiration (1)
- cupped microstructures (1)
- microhandling (1)
- micropatterned adhesives (1)
- polyurethane (1)
Scientific Unit
Bioinspired Underwater Adhesion to Rough Substrates by Cavity Collapse of Cupped Microstructures
(2021)
Underwater or wet adhesion is highly desirable for numerous applications but is counteracted by the liquids in the contact which weaken intermolecular attraction. The problem is exacerbated in conjunction with surface roughness when liquids partially remain in grooves or dimples of the substrate. In the present study, a cupped microstructure with a cavity inspired by suction organs of aquatic animals is proposed. The microstructures (cup radius of 100 µm) are made from polyurethane using two-photon lithography followed by replica molding. Adhesion to rough substrates is emulated experimentally by a micropatterned model substrate with varying channel widths. Pull-off stresses are found to be about 200 kPa, i.e., twice atmospheric pressure. Evaluation of force–displacement curves together with in situ observations reveal the adhesion mechanism, which involves adaptation to surface roughness and an elastic force induced by the collapse of the cavity that holds sealed contact with the substrate during retraction. This new microarchitecture may pave the way for next generation microstructures applicable to real, rough surfaces under wet conditions.
Octopus, clingfish, and larva use soft cups to attach to surfaces under water. Recently, various bioinspired cups have been engineered. However, the mechanisms of their attachment and detachment remain elusive. Using a novel microcup, fabricated by two-photon lithography, coupled with in situ pressure sensor and observation cameras, we reveal the detailed nature of its attachment/detachment under water. It involves elasticity-enhanced hydrodynamics generating “self-sealing” and high suction at the cup-substrate interface, converting water into “glue.” Detachment is mediated by seal breaking. Three distinct mechanisms of breaking are identified, including elastic buckling of the cup rim. A mathematical model describes the interplay between the attachment/detachment process, geometry, elasto-hydrodynamics, and cup retraction speed. If the speed is too slow, then the octopus cannot attach; if the tide is too gentle for the larva, then water cannot serve as a glue. The concept of “water glue” can innovate underwater transport and manufacturing strategies. Under-water soft cups form strong attachment with solid surfaces upon retraction by generating large transient suction.
Enhanced dry adhesion of micropatterned polymeric surfaces has been frequently demonstrated. Among the design parameters, the cap geometry plays an important role to improve their performance. In this work, we combined experiments on single polyurethane mushroom-shaped fibrils (with stalk diameter 80 µm and height 125 µm) against flat glass, with numerical simulations implementing a cohesive zone. We found that the geometry of the mushroom cap strongly affects the interfacial crack behavior and the pull-off stress. The experimental and numerical results suggest that optimal adhesion was accompanied by the appearance of both edge and interior interfacial cracks during separation. Finite elemental analyses revealed the evolution of the interfacial stress distributions as a function of the cap thickness and confirmed the distinct detachment mechanisms. Furthermore, the effect of the stalk diameter and the Young's modulus on the adhesive force was established, resulting in an optimal design for mushroom-shaped fibrils.
Robotic handling and transfer printing of micrometer-sized superlight objects is a crucial technology in industrial fabrication. In contrast to the precise gripping with micropatterned adhesives, the reliable release of superlight objects with negligible weight is a great challenge. Slanted deformable polymer microstructures, with typical pillar cross-section 150 µm × 50 µm, are introduced with various tilt angles that enable a reduction of adhesion by a switching ratio of up to 500. The experiments demonstrate that the release from a smooth surface involves sliding of the contact during compression and subsequent peeling of the object during retraction. The handling of a 0.5 mg perfluorinated polymer micro-object with high accuracy in repeated pick-and-place cycles is demonstrated. Based on beam theory, the forces and moments acting at the tip of the microstructure are analyzed. As a result, an expression for the pull-off force is proposed as a function of the sliding distance and a guide to an optimized design for these release structures is provided.
Recent advances in bio-inspired microfibrillar adhesives have resulted in technologies that allow reliable attachment to a variety of surfaces. Because capillary and van der Waals forces are considerably weakened underwater, fibrillar adhesives are however far less effective in wet environments. Although various strategies have been proposed to achieve strong reversible underwater adhesion, strong adhesives that work both in air and underwater without additional surface treatments have yet to be developed. In this study, we report a novel design—cupped microstructures (CM)—that generates strong controllable adhesion in air and underwater. We measured the adhesive performance of cupped polyurethane microstructures with three different cup angles (15, 30, and 45°) and the same cup diameter of 100 μm in dry and wet conditions in comparison to standard mushroom-shaped microstructures (MSMs) of the same dimensions. In air, 15°CM performed comparably to the flat MSM of the same size with an adhesion strength (force per real contact area) of up to 1.3 MPa, but underwater, 15°CM achieved 20 times stronger adhesion than MSM ( ∼ 1 MPa versus ∼ 0.05 MPa). Furthermore, the cupped microstructures exhibit self-sealing properties, whereby stronger pulls lead to longer stable attachment and much higher adhesion through the formation of a better seal.
Abstract Switchable underwater adhesion can be useful for numerous applications, but is extremely challenging due to the presence of water at the contact interface. Here, deformable cupped microstructures (diameter typically 100 µm, rim thickness 5 µm) are reported that can switch between high (≈1 MPa) and low (<0.2 MPa) adhesion strength by adjusting the retraction velocity from 100 to 0.1 µm s–1. The velocity at which the switch occurs is determined by specific design parameters of the cupped microstructure, such as the cup width and angle. The results are compared with theoretical estimates of water penetration into the contact zone and expansion of the cup during retraction. This work paves the way for controlling wet adhesion on demand and may inspire further applications in smart adhesives.
Micro-objects stick tenaciously to each other—a well-known show-stopper in microtechnology and in handling micro-objects. Inspired by the trigger plant, we explore a mechanical metastructure for overcoming adhesion involving a snap-action mechanism. We analyze the nonlinear mechanical response of curved beam architectures clamped by a tunable spring, incorporating mono- and bistable states. As a result, reversible miniaturized snap-through devices are successfully realized by micron-scale direct printing, and successful pick-and-place handling of a micro-object is demonstrated. The technique is applicable to universal scenarios, including dry and wet environment, or smooth and rough counter surfaces. With an unprecedented switching ratio (between high and low adhesion) exceeding 104, this concept proposes an efficient paradigm for handling and placing superlight objects. Nature teaches us how to design reliable grippers for moving and placing super-small objects that tend to stick to everywhere.