Refine
Document Type
Has Fulltext
- yes (11)
Is part of the Bibliography
- yes (11)
Keywords
- Reibung (2)
- atomic force microscopy (2)
- AFM (1)
- Adhäsion (1)
- Bioinspiration (1)
- Elektrochemie (1)
- Gold (1)
- Ionische Flüssigkeit (1)
- Mikrostrukturierung (1)
- Mikrotribologie (1)
Scientific Unit
- Interactive Surfaces (10)
In dieser Arbeit wurde mittels dynamischer Scherkraftmikroskopie der Einfluss chemischer und physikalischer Oberflächeneigenschaften auf die Struktur und die Schereigenschaften unpolarer und ionischen Flüssigkeiten im nanoskaligen Spalt untersucht. Es konnte gezeigt werden, dass die Schereigenschaften im nanoskaligen Spalt entscheidend von der Ausprägung und der Struktur der molekularen Lagenbildung beeinflusst werden. Diese hängt wiederum von den chemischen und physikalischen Eigenschaften der einschnürenden Oberflächen ab. Die Affinität der Flüssigkeitsmoleküle zu den Oberflächen bestimmt dabei die Orientierung der Moleküle im Spalt sowie die Anzahl der zu beobachteten Lagen. Molekulare Lagenbildung wurde in allen untersuchten Flüssigkeiten und auf allen untersuchten Substraten beobachtet. Dabei handelte es sich sowohl um einfache als auch um technisch relevante Substrate und Flüssigkeiten. Auch konnte gezeigt werden, dass Schersteifigkeit und -Dämpfung im nanoskaligen Spalt nicht von der Normalkraft sondern nur von der Anzahl der molekularen Lagen im Spalt abhängen. Mittels elektrochemischer Methoden war es möglich die molekulare Lagenbildung sowie die Schereigenschaften ionischer Flüssigkeiten zu kontrollieren. Die Wahl geeigneter Materialien, Beschichtungen oder das Anlegen von elektrischen Potenzialen ermöglicht damit die aktive Kontrolle der molekularen Struktur und der Schereigenschaften im nanoskaligen Spalt.
Metallic glasses (MGs) are promising materials for micromechanical systems, where miniaturized components involving mechanical contact require control of friction. Nanotribological experiments on MGs in corrosive aqueous solutions are carried out using atomic force microscopy (AFM), focusing on the role of surface oxide films formed during corrosion. A new method is developed to study in situ the structure of surface oxide films. The surface oxide film has a bilayer structure as revealed by repeated scanning with the AFM tip. The dependence of friction on electrochemical potential reveals the growth mechanism of the oxide film. Friction and adhesion after different immersion times in different solutions allow to compare the physicochemical processes of surface dissolution at the interfaces of the two layers of surface films and elucidate their influence on friction. An irregular atomic-scale stick-slip friction is observed and attributed to the amorphous nature of corroded surfaces. Finally, we show three different friction processes occurring at increasing normal loads: removal of the dissolution layer at low-load regime; stress-assisted tribo-oxidation in intermediate-load regime; and tribochemical wear in high-load regime. The chemical sensitivity of nanotribology studies demonstrates a novel route to explore fundamental mechanisms of corrosion at the microscopic scale.
Understanding and controlling adhesive interactions on the molecular scale is one of the main challenges in the field of nanotechnology. A new surface functionalization was developed in this thesis for investigating the molecular origin of adhesive interactions from single molecular level to assemblies of multiple bonds. The surface functionalization is based on supramolecular bonds established by the inclusion of ditopic connector molecules into two cyclodextrin (CD) molecules, one attached to a tip of an atomic force microscope and the other attached to a flat silicon surface. By using different connector molecules, the dynamics in friction and adhesion can be tuned. The dynamics of the molecular system were studied with respect to single bond kinetics and the flexibility of the attachment. The control of adhesion and friction was achieved by using photosensitive connector molecules which are sensitive to an external light stimuli. In order to enhance the applicability of the surface functionalization, the CD molecules were attached onto stiff polymers which can bridge the surface roughness of real contacts. The results of this thesis provide a deeper understanding of the molecular mechanisms underlying adhesive friction and open a new pathway for actively controlling friction and adhesion.
In dieser Arbeit wurden die Hafteigenschaften bio-inspirierter Mikrostrukturen untersucht. Es wurde ein Aufbau entwickelt, der eine Kombination aus Kraftmessungen und optischer in situ Beobachtung der realen Kontaktfläche mit Hilfe der frustrierten Totalreflexion ermöglicht. Die vorliegende Arbeit zeigt, dass Defekte an der Grenzfläche, Systemparameter (z. B. Maschinensteifigkeit, Fehlausrichtung) und äußere Einflüsse (z. B. Luftdruck) die Ablösemechanismen der Haftstrukturen verändern. Durch den maßgeblichen Einfluss von Defekten in der Kontaktfläche ergab sich eine breite Verteilung in der Haftfestigkeit der einzelnen Fibrillen im Array. Es konnte beobachtet werden, dass bereits bis zu 30 % der Fibrillen den Kontakt zum Substrat verloren, bevor die maximale Haftkraft erreicht wurde. Die Ergebnisse dieser Arbeit verdeutlichen, dass zur Optimierung der Adhäsionseigenschaften das Gesamtsystem betrachtet werden muss und nicht von Einzelfibrillen auf ein gesamtes Array geschlossen werden kann. Anhand von Weibullfunktionen lässt sich die Verteilung der Haftfestigkeiten und daraus die Qualität von Arrays beschreiben. Diese Verteilung konnte mit Hilfe des korrelativen Ansatzes zum ersten Mal nachgewiesen und bestimmt werden. Die neu entwickelte Methode liefert somit einen geeigneten Zugang Haftstrukturarrays hinsichtlich ihrer Qualität zu quantifizieren und anwendungsrelevanter Einflussfaktoren zu testen.
Understanding the atomistic origin of friction forces helps to design more efficient mechanical systems and lubricants. Atomic Force Microscopy (AFM) is a powerful tool for measuring mechanical properties in field of surface science. AFM, beyond imaging the surfaces at nanoscale, can also probe the surface forces down to piconewton forces and thus contribute to our understanding of friction at the atomic scale. In this thesis we present the results of AFM investigations into nanoscale friction anisotropy on graphitic materials and into the mechanical strength of graphene on Pt(111). We have discovered that on graphitic surfaces the friction forces reveal preferred sliding directions. Any deviation from the preferred directions results in a transverse component of friction which forces the slider to move along one of one of the atomic zigzag directions. For sliding on graphene/Pt(111) with increasing load we found three distinct regimes. At very low loads, sliding is entirely elastic and the friction is almost negligible. As load is increased, the platinum substrate undergoes plastic deformation but the graphene layer is unaffected. At very high pressures (> 50GPa) graphene ruptures and loses its protective character.
Fundamental mechanisms of friction and wear on the atomic scale were studied for different oxidation states of metallic glass surfaces. Bulk metallic glass was prepared by suction casting and characterised by X-Ray Diffraction and Dynamic Scanning Calorimetry. Surfaces were oxidised in controlled atmosphere and characterised by Electron Microscopy and X-ray Photoelectron Spectroscopy. Tribological experiments on the nano-scale were performed by Atomic Force Microscopy in ultra-high vacuum on a continuous load scale extending over three decades with different cantilevers. The oxide layer on Zr60Cu30Al10 consists mainly of an amorphous matrix of ZrO2 and Al2O3 with embedded crystalline Cu2O nanoparticles. Stick-slip friction was found on both, the metallic glass and on the oxidised surface. Comparative experiments revealed higher friction and wear after oxidation. Due to the surface roughness, friction is scale dependent on the oxidised surface. Sharp indenters were found to penetrate the oxide surface resulting in cutting wear. Indenters with larger contact areas initiate plowing and eventually delamination from the surface of metallic glass. On the clean metallic glass, plastic deformation was attributed to plowing mechanisms, independent on the contact area.
The 2D materials exhibit excellent tribological properties due to their weak inter-plane interactions, such as the ultra-low friction, which can be further tuned by number of layers, application of electric bias, stacking of different materials into a van der Waals heterostructure, and change of substrate. In this work, the tribological properties of 2D materials were investigated experimentally by means of atomic force microscopy techniques in ultra-high vacuum and theoretically with atomistic simulations. Friction measurements on epitaxial graphene on SiC(0001) show that the ultra-low friction is limited by a normal load threshold, above which friction increases by one order of magnitude. Simulations suggest that, at contact pressures above 10 GPa, the high-friction regime is a result of an intermittent sp3 rehybridization of graphene and the formation of covalent bonds. Friction on the MoS2/graphene heterostructure is dominated by adhesion due to the out-of-plane deformation of the MoS2 layers. Increasing the number of MoS2 layers decreases friction as the flexural compliance decreases. Higher friction was recorded on MoSe2/hBN compared to graphene/hBN heterostructure or pristine hBN. Work on exfoliated materials was facilitated by the application of navigational microstructures.
Die Kontrolle von Reibung auf kleiner Skala ist von fundamentaler Bedeutung, insbesondere im Hinblick auf die fortschreitende Miniaturisierung von mechanischen Bauteilen. Im Rahmen dieser Arbeit wurden hochaufgelöste Experimente zur Reibung in ultrasauberen Flüssigkeiten durchgeführt, um so die Möglichkeiten der Kontrolle von Reibungskräften auf Gold in wässrigen Elektrolyten und ionischen Flüssigkeiten auf atomare Mechanismen zurückführen zu können. Die Kombination der Rasterkraftmikroskopie mit elektrochemischen Methoden erlaubt es, die Oberflächeneigenschaften reversibel und in situ zu variieren. Die vorliegende Arbeit zeigt, dass die Reibungskraft mit der atomaren Oberflächenrauigkeit skaliert. Auf reinen, rekonstruierten Goldoberflächen ist die Reibung sehr gering und nur schwach von der Normalkraft abhängig. Mit der Modifikation der Oberfläche durch Aufhebung der Rekonstruktion, durch Oxidation oder durch ionische Adsorbate wird eine signifikante Zunahme der Reibungskraft beobachtet. Die Prozesse sind reversibel und erlauben eine aktive Kontrolle und Schaltbarkeit der Reibung. Ionische Flüssigkeiten werden genutzt, um das effektive elektrochemische Fenster zu vergrößern. Es wird gezeigt, dass die Reibung über das Verhalten eingeschlossener ionischer Schichten anstatt durch die Modifikation der Oberfläche an sich geschaltet werden kann. Die Ergebnisse dieser Arbeit belegen eine breite Anwendbarkeit des Konzepts der elektrochemischen Kontrolle von Reibungskräften.
Ein neuartiges Messgerät wurde durch die Kombination von einem AFM und zwei Tribometern entwickelt. Dieses Gerät ist in der Lage eine Probe mechanisch und tribologisch auf verschiedenen Längenskalen zu charakterisieren. Die Leistungsfähigkeit wird anhand von drei sehr unterschiedlichen Proben und Messaufgaben demonstriert, die im Folgenden beschrieben werden. Als Erstes wird das Reibungs- und Verschleißverhalten von Graphenlagen auf SiC und Cu untersucht. Die makroskopische Reibung auf SiC ist nach dem Abscheren des Graphens durch die Grenzflächenschicht bestimmt, auf Cu dominiert die Deformation der Oberfläche. Diese Arbeit zeigt außerdem, dass Wasser eine wichtige Rolle in der Reibung von Graphen auf der mikroskopischen Skala spielt. In der zweiten Untersuchung wird ein transparenter, viskoelastischer Kunststoff deformiert und die anschließende Formrelaxation profilometrisch vermessen. Zusätzlich wird mittels Polarisationsmikroskopie die Spannungsrelaxation bestimmt. Aus beidem zusammen werden die Kriechfolgefunktion und das Relaxationsspektrum berechnet. Zuletzt wird das Reibungs- und Verschleißverhalten des Periostracums der Miesmuschel im nassen und trockenen Zustand untersucht. Diese Arbeit zeigt, dass es im nass sehr abriebsresistent ist, während es im trockenen Fall schnell verschleißt. Zusätzlich wurden E-Modul und Härte mittels Nanoindentation bestimmt. Alle drei Projekte belegen die Wichtigkeit des skalenübergreifenden Ansatzes in mechanischen Untersuchungen.
Plasticity experiments have been conducted with single dislocation resolution in both indentation and wear studies using atomic force microscopy (AFM). The high force sensitivity and the small tip radii in AFM permit the measurement of the nucleation of single dislocations in plastically deformed nanoscale volumes. Nanoscale mechanical testing in an ultra-high vacuum (UHV) environment allows for the preparation of oxide-free surfaces, required for direct comparison between atomistic simulation and experiment. Moreover, nanoscale mechanical testing often shows increased strength compared to what is observed in macroscale testing, motivating the use of atomistic simulation to gain insight into new deformation mechanisms. Indentation experiments show that it is possible not only to observe single dislocation events but also determine the glide vector of the dislocation in three dimensions on KBr(001). Discontinuous displacements of the tip during indentation in both normal and lateral directions are indicative of yielding events, referred to as pop-ins. The measured displacement of the tip into the material during these events is on the order of one Ångström or less when blunt diamond coated tips are used as indenters. Larger pop-in displacements are measured with sharper probes, resulting from the localization of stress near the surface. Only with the use of AFM can such small, Ångström-sized pop-in displacements be observed. Indentation creep studies indicate that creep in nanoscale volumes is accommodated only through dislocation nucleation and glide. A comparison between creep measured with AFM-based indentation and instrumented nanoindentation highlights the importance of dislocation nucleation and glide at this length-scale. High resolution imaging of the indented structure on KBr(001) allows for the identification of dislocations and charges associated with them. Wear experiments have demonstrated the contribution of dislocations to wear on the atomic scale. The role of dislocations in wear experiments has been observed through the similar dislocation structures typically surrounding scratches and indents, as well as in pop-ins observed while scratching. The measured friction coefficient in nanoscale wear experiments is closer to those typically reported in macroscopic experiments. This finding suggests that while single-asperity experiments at low loads on flat surfaces may produce no or little wear, friction of real rough surfaces always involves some wear and plastic deformation of microscopic contacts between the two surfaces.