BioRxiv
Refine
Document Type
- Preprint (11)
Language
- English (11)
Has Fulltext
- yes (11)
Is part of the Bibliography
- yes (11)
Keywords
- Immunology (1)
- biocompatibility (1)
- bioengineering (2)
- engineered living materials (1)
- immunology (2)
- in vitro culture (1)
- living therapeutics (1)
- plant biology (1)
- synthetic biology (3)
Scientific Unit
- Bioprogrammable Materials (4)
- Chemical Analytics (2)
- Dynamic Biomaterials (4)
- Fellow (3)
- Immuno Materials (2)
- Materials Host Interactions (1)
- Physical Analytics (1)
Peptide drugs have seen rapid advancement in biopharmaceutical development, with over 80 candidates approved globally. Despite their therapeutic potential, the clinical translation of peptide drugs is hampered by challenges in production yields and stability. Engineered bacterial therapeutics is a unique approach being explored to overcome these issues by using bacteria to produce and deliver therapeutic compounds at the body site of use. A key advantage of this technology is the possibility to control drug delivery within the body in real time using genetic switches. However, the performance of such genetic switches suffers when used to control drugs that require post-translational modifications or are toxic to the host. In this study, these challenges were experienced when attempting to establish a thermal switch for the production of a ribosomally synthesized and post-translationally modified peptide antibiotic, darobactin, in probiotic E. coli. These challenges were overcome by developing a thermo-amplifier circuit that combined the thermal-switch with a T7 RNA Polymerase and its promoter that overcame limitations imposed by the host transcriptional machinery due to its orthogonality to it. This circuit enabled production of pathogen-inhibitory levels of darobactin at 40°C while maintaining leakiness below the detection limit at 37°C. More impressively, the thermo-amplifier circuit sustained production beyond the thermal induction duration. Thus, raised temperature for 2 h was sufficient for the bacteria to produce pathogen-inhibitory levels of darobactin even in the physiologically relevant simulated conditions of the intestines that include bile salts and low nutrient levels.
Synthetic cells have emerged as novel biomimetic materials for studying fundamental cellular functions and enabling new therapeutic approaches. However, replicating the structure and function of complete tissues as self-organized 3D collectives has remained challenging. Here, we engineer lymph node-mimicking 3D lymphatic bottom-up tissues (lymphBUTs) with mechanical adaptability, metabolic activity, and hierarchical microstructural organization based on individual synthetic cells. We demonstrate that primary human immune cells spontaneously infiltrate and functionally integrate into these synthetic lymph nodes to form living tissue hybrids. By tuning the lymphBUT micro-organization and metabolic activity, we induce the ex vivo expansion of therapeutic CD8+ T cells with an IL-10+/IL-17+ regulatory phenotype. Our study highlights the functional integration of living and non-living matter, advancing synthetic cell engineering toward 3D tissue structures.
Self-assembly, a fundamental property of living matter, drives the interconnected cellular organization of tissues. Synthetic cell models have been developed as bionic materials to mimic inherent cellular features such as self-assembly. Here, we leverage co-assembly of synthetic and natural cells to create hybrid living 3D cancer cultures. We screened synthetic cell models, including giant unilamellar vesicles, coacervates, microdroplet emulsions, proteinosomes, and colloidosomes, for their ability to form hybrid tumoroids. Our results identify the balance of inter- and extracellular adhesion and synthetic cell surface tension as key material properties driving successful co-assembly of hybrids. We further demonstrate that these synthetic cells can establish artificial tumor immune microenvironments (ART-TIMEs), mimicking immunogenic signals within tumoroids. Using the ART-TIME approach, we identify co-signaling mechanisms between PD-1 and CD2 as a driver in immune evasion of pancreatic ductal adenocarcinoma. Our findings demonstrate the 3D bottom-up self-assembly of hybrid cancer microenvironments to replace immune components with defined bionic materials, pushing the boundaries to functionally integrating living and non-living matter.
Engineered living materials (ELMs), which usually comprise bacteria, fungi, or animal cells entrapped in polymeric matrices, offer limitless possibilities in fields like drug delivery or biosensing. To determine the conditions that sustain ELM performance while ensuring ELM-host compatibility is essential before testing them in vivo. This is critical to reduce animal experimentation and can be achieved through in vitro investigations. Towards this goal, we designed a 96-well plate-based screening method to streamline ELM growth across culture conditions and determine their compatibility potential in vitro. We showed proliferation of three bacterial species encapsulated in hydrogels over time and screened six different cell culture media. We fabricated ELMs in bilayer and monolayer formats and tracked bacterial leakage. After screening, an appropriate medium was selected that sustained growth of an ELM, and it was used to study cytocompatibility in vitro. ELM cytotoxicity on murine fibroblasts and human monocytes was studied by adding ELM supernatants and measuring cell membrane integrity and live/dead staining, respectively, proving ELM cytocompatibility. Our work illustrates a simple setup to streamline the screening of compatible environmental conditions of ELMs with the host.
Background The Lactobacillus family comprises many species of great importance for the food and healthcare industries, with numerous strains identified as beneficial for humans and used as probiotics. Hence, there is a growing interest in engineering these probiotic bacteria as live biotherapeutics for animals and humans. However, the genetic parts needed to regulate gene expression in these bacteria remain limited compared to model bacteria like E. coli or B. subtilis. To address this deficit, in this study, we selected and tested several bacteriophage-derived genetic parts with the potential to regulate transcription in lactobacilli.
Results We screened genetic parts from 6 different lactobacilli-infecting phages and identified one promoter/repressor system with unprecedented functionality in L. plantarum WCFS1. The phage-derived promoter was found to achieve expression levels nearly 9-fold higher than the previously reported strongest promoter in this strain and the repressor was able to almost completely repress this expression by reducing it nearly 500-fold.
Conclusions The new parts and insights gained from their engineering will enhance the genetic programmability of lactobacilli for healthcare and industrial applications.
Cytotoxic T lymphocytes (CTLs) are involved in development of diabetes. However, the impact of excessive glucose on CTL-mediated antigen-independent killing remains elusive. Here, we report that TNF-related apoptosis inducing ligand (TRAIL) is substantially up- regulated in CTLs in environments with high glucose (HG) both in vitro and in vivo. The PI3K- Akt-NFκB axis and non-mitochondrial reactive oxygen species are essential in HG-induced TRAIL upregulation in CTLs. TRAILhigh CTLs induce apoptosis of pancreatic beta cell line 1.4E7. Metformin and Vitamin D synergistically reduce HG-enhanced expression of TRAIL in CTLs and coherently protect 1.4E7 cells from TRAIL-mediated apoptosis. Notably, in patients with diabetes, correlation between Vitamin D concentrations in plasma and glucose levels is linked to HG-enhanced TRAIL expression on CTLs. Microarray data reveal that OXCT2, an important enzyme in ketone body catabolism, is a promising target in response to vitamin D. Our work not only reveals a novel mechanism of CTL involvement in progression of diabetes, but also establishes CTLs as a target for combined metformin and vitamin D therapy to protect pancreatic beta cells of diabetic patients.Competing Interest StatementThe authors have declared no competing interest.
Iron (Fe) toxicity is a major challenge for plant cultivation in acidic water-logged soil environments, where lowland rice is a major staple food crop. Only few studies addressed the molecular characterization of excess Fe tolerance in rice, and these highlight different mechanisms for Fe tolerance in the studied varieties.
Here, we screened 16 lowland rice varieties for excess Fe stress growth responses to identify contrasting lines, Fe-tolerant Lachit and -susceptible Hacha. Hacha and Lachit differed in their physiological and morphological responses to excess Fe, including leaf growth, leaf rolling, reactive oxygen species generation, Fe and metal contents. These responses were mirrored by differential gene expression patterns, obtained through RNA-sequencing, and corresponding GO term enrichment in tolerant versus susceptible lines. From the comparative transcriptomic profiles between Lachit and Hacha in response to excess Fe stress, individual genes of the category metal homeostasis, mainly root-expressed, may contribute to the tolerance of Lachit. 22 out of these 35 metal homeostasis genes are present in selection sweep genomic regions, in breeding signatures and/or differentiated during rice domestication. These findings will serve to design targeted Fe tolerance breeding of rice crops.
The permeability of the Human Trabecular Meshwork (HTM) regulates eye pressure via a porosity gradient across its thickness modulated by stacked layers of matrix fibrils and cells. Changes in HTM porosity are associated with increases in intraocular pressure and the progress of diseases like glaucoma. Engineered HTMs could help to understand the structure-function relation in natural tissues, and lead to new regenerative solutions. Here, melt electrowriting (MEW) is explored as a biofabrication technique to produce fibrillar, porous scaffolds that mimic the multilayer, gradient structure of native HTM. Poly(caprolactone) constructs with a height of 125-500 μm and fiber diameters of 10-12 μm are printed. Scaffolds with a tensile modulus between 5.6 and 13 MPa, and a static compression modulus in the range of 6-360 kPa are obtained by varying the scaffolds design, i.e., density and orientation of the fibers and number of stacked layers. Primary HTM cells attach to the scaffolds, proliferate, and form a confluent layer within 8-14 days, depending on the scaffold design. High cell viability and cell morphology close to that in the native tissue are observed. The present work demonstrates the utility of MEW to reconstruct complex morphological features of natural tissues.Competing Interest StatementThe authors have declared no competing interest.
Background Natural killer (NK) cells play a key role in eliminating tumorigenic and pathogen-infected cells. Verbena officinalis (V. officinalis) has been used as a medical plant in traditional and modern medicine, exhibiting anti-tumor and anti-inflammation activity.Purpose The impact of bioactive constituents of V. officinalis on immune responses still remains largely elusive. In this work we investigated the potential targets of V. officinalis and focused on killing efficiency and related functions of NK cells regulated by bioactive constituents of V. officinalis.Study design/methods We used primary human NK cells from peripheral blood mononuclear cells. Potential regulatory roles of selected compounds were analyzed by network pharmacology approaches. Killing efficiency was determined with real-time killing assay and live-cell imaging in 3D. Proliferation was examined by CFSE staining. Expression of cytotoxic proteins was analyzed using flow cytometry. Lytic granule release was quantified by CD107a degranulation assay. Contact time required for killing and determination of serial killers were analyzed using live cell imaging results. Results: Using network pharmacology approaches, we analyzed potential regulatory roles of five compounds (Acteoside, Apigenin, Kaempferol, Verbenalin and Hastatoside) from V. officinalis on immune cell functions and revealed NK cells as a major target. The effect of these compounds on NK killing efficiency was examined with real-time killing assay, and Verbenalin enhanced NK killing efficiency significantly. Further investigation showed that Verbenalin did not affect proliferation, expression of cytotoxic proteins, or lytic granule degranulation, but rather reduced contact time required for killing therefore enhancing total killing events per NK cell, suggestively via inhibition of inhibitory receptors as determined by docking assay.Conclusions Our findings reveal the underlying mechanisms how V. officinalis regulates functions of immune cells, especially NK cells, suggesting Verbenalin from V. officinalis as a promising therapeutic reagent to fight cancer and infection.Competing Interest StatementThe authors have declared no competing interest.
Collagen density defines 3D migration of CTLs and their consequent cytotoxicity against tumor cells
(2021)
Solid tumors are often characterized by condensed extracellular matrix (ECM). The impact of dense ECM on cytotoxic T lymphocytes (CTL) function is not fully understood. Here, we report that CTL-mediated cytotoxicity is substantially impaired in dense collagen matrices. Although the intrinsic killing machinery including expression of cytotoxic proteins and degranulation was intact, CTL motility was substantially compromised in dense collagen. We found that for 3D CTL migration, persistence and velocity was regulated by collagen stiffness and the porosity, respectively. Interestingly, 3D CTL velocity is strongly correlated with their nuclear deformability/flexibility during migration, which is regulated by the microtubule network. Moreover, CTL migration was completely abolished by inhibition of actin polymerization and or myosin IIA. Remarkably, disruption of the microtubule-networks significantly improves the impaired migration, search efficiency, and cytotoxicity of CTLs in dense collagen. Our work suggests the microtubule network as a promising target to rescue impaired CTL killing capacity in solid tumor related scenarios.