540 Chemie
Refine
Year of publication
Document Type
- Article (91)
- Doctoral Thesis or Habilitation (70)
- Preprint (8)
- Report (3)
- Conference Proceeding (2)
- Contribution to a Periodical (1)
Keywords
- nanoparticles (6)
- Nanopartikel (4)
- electrochemistry (4)
- lithium-ion batteries (4)
- Aluminium (3)
- Beschichtung (3)
- CVD (3)
- CVD-Verfahren (3)
- Sol-Gel-Verfahren (3)
- adsorption (3)
Scientific Unit
- Energy Materials (39)
- Structure Formation (39)
- Dynamical Biomaterials (20)
- Electrofluids (10)
- Physical Analytics (8)
- Functional Microstructures (7)
- Interactive Surfaces (5)
- Chemical Analytics (4)
- Innovative Electron Microscopy (3)
- Nanomere (3)
Efficient separation of specific ions from aqueous media is crucial for advanced water treatment and resource recovery. Flow electrode capacitive deionization (FCDI) offers potential for selective ion removal through continuous operation. This study evaluates the performance of selective cation separation using a commercial activated carbon slurry in a multi-ion solution of monovalent (Li+, Na+, K+) and bivalent (Ca2+, Mg2+) cations. We assess ion removal and cation selectivity under different operational parameters, such as applied potential, slurry flow rate, and feed water flow rate. Our data show that bivalent cations, namely Ca2+ and Mg2+, are preferentially removal due to their higher charge-to-size ratio, aligning with hydrated ion sizes. The highest separation rate was observed for Ca2+ (5.7 μg cm−2 min−1), and the lowest for Li+ (0.2 μg cm−2 min−1). At the highest applied voltage (1.2 V), charge efficiencies reached 70 %, with an energy consumption of 41 Wh mol−1 for nearly complete cation removal. Optimal conditions were identified with a slurry flow rate of 6 mL min−1, feed water flow rate of 2 mL min−1, activated carbon content of 10 mass%, 1 mass% carbon black, and a cell voltage of 1.2 V. These findings highlight the importance of optimizing operational parameters to enhance ion removal.
Nominal CaAl2Pt2 and Ca2Al3Pt – two new Intermetallic Compounds in the Ternary System Ca−Al−Pt
(2024)
Single crystals of CaAl2Pt2, Ca2Al3Pt and Ca2AlPt2 were initially observed in an attempt to synthesize Ca3Al4Pt4. Their structures were determined using single-crystal X-ray diffraction experiments. While nominal CaAl2Pt2 (CaBe2Ge2 type, P4/nmm, a=426.79(2), c=988.79(6) pm, wR2=0.0679, 246 F2 values and 18 variables) and Ca2Al3Pt (Mg2Cu3Si type, P63/mmc, a=561.46(5), c=876.94(8) pm, wR2=0.0664, 214 F2 values and 13 variables) exhibit Al/Pt mixing, for Ca2AlPt2 (Ca2Ir2Si type, C2/c, a=981.03(2) b=573.74(1), c=772.95(2) pm, β=101.862(1)° wR2=0.0307, 2246 F2 values and 25 variables) no mixing was observed. Subsequently, the nominal compositions were targeted with synthetic attempts from the elements using arc-melting and annealing techniques. For CaAl2Pt2 and Ca2Al3Pt always multi-phase mixtures were observed while Ca2AlPt2 could be obtained as almost X-ray pure material. Quantum-chemical calculations were used to investigate the charge transfer in these compounds rendering them polar intermetallics with a designated [AlxPty]δ− polyanion and Caδ+ cations in the cavities of the polyanions.
Cobaltocenium-containing polymers, an emerging class of materials, have historically been challenging to prepare due to their chemical robustness. In this work, we introduce a novel and highly efficient method for their preparation based on methacrylate-containing block copolymers (BCPs), allowing segment-selective introduction of functional moieties. The catalyst-free and quantitative hydroamination reaction we introduce has proven successful for the post-modification of amine-containing polymers with cobaltocenium. To demonstrate the versatility of this method, we successfully synthesized a series of BCPs consisting of polystyrene and a 5 to 20 wt% poly(tert-butyl aminoethyl methacrylate) (PtBAEMA) segment by living anionic polymerization. The selective functionalization with ethynyl-cobaltocenium hexafluorophosphate results in adjustable 5 to 40 wt% cobaltocenium units in the polymer as part of the PtBAEMA block segment. The success was monitored by IR spectroscopy, and the quantitative incorporation of the cobaltocenium moiety was verified by 1H NMR, UV-Vis spectroscopy, and TGA. DSC proved the block-selective cobaltocenium introduction by an additional glass transition temperature at 154 °C, and the strong microphase separation character of the amphiphilic BCPs leads to lamellar structures in the bulk state, as proven by TEM investigations. Finally, the water contact angle on polymer films is compared, showing polarity inversion and tunability upon conversion of hydrophilic amine to hydrophobic cobaltocenium hexafluorophosphate moieties. This successful synthesis and characterization of cobaltocenium-containing BCPs not only paves the way for a new class of metallopolymers but also offers functionalization possibilities for a variety of other responsive moieties, providing access to functional BCPs.
Herein, we report polyphosphonate covalent organic frameworks (COFs) constructed via P-O-P linkages. The materials are synthesized via a single-step condensation reaction of the charge-assisted hydrogen-bonded organic framework, which is constructed from phenylphosphonic acid and 5,10,15,20‐tetrakis[p‐phenylphosphonic acid]porphyrin and is formed by simply heating its hydrogen-bonded precursor without using chemical reagents. Above 210 °C, it becomes an amorphous microporous polymeric structure due to the oligomerization of P-O-P bonds, which could be shown by constant-time solid-state double-quantum 31P nuclear magnetic resonance experiments. The polyphosphonate COF exhibits good water and water vapor stability during the gas sorption measurements, and electrochemical stability in 0.5 M Na2SO4 electrolyte in water. The reported family of COFs fills a significant gap in the literature by providing stable microporous COFs suitable for use in water and electrolytes. Additionally, we provide a sustainable synthesis route for the COF synthesis. The narrow pores of the COF effectively capture CO2.
The structure of supraparticles (SPs) is a key parameter for achieving advanced functionalities arising from the combination of different nanoparticle (NP) types in one hierarchical entity. However, whenever a droplet-assisted forced assembly approach is used, e.g., spray-drying, the achievable structure is limited by the inherent drying phenomena of the method. In particular, mixed NP dispersions of differently sized colloids are heavily affected by segregation during the assembly. Herein, the influence of the colloidal arrangement of Pt and SiO2 NPs within a single supraparticulate entity is investigated. A salt-based electrostatic manipulation approach of the utilized NPs is proposed to customize the structure of spray-dried Pt/SiO2 SPs. By this, size-dependent separation phenomena of NPs during solvent evaporation, that limit the catalytic performance in the reduction of 4-nitrophenol, are overcome by achieving even Pt NP distribution. Additionally, the textural properties (pore size and distribution) of the SiO2 pore framework are altered to improve the mass transfer within the material leading to increased catalytic activity. The suggested strategy demonstrates a powerful, material-independent, and universally applicable approach to deliberately customize the structure and functionality of multi-component SP systems. This opens up new ways of colloidal material combinations and structural designs in droplet-assisted forced assembly approaches like spray-drying.
Silver-coated copper microparticles combine the oxidation resistance of silver with the low cost of copper. They are interesting components for printed conductive structures. We studied whether printed films of such particles can be printed and sintered at low temperatures in air to create highly conductive films and whether it is possible to recover the particles from them for recycling. Pastes containing 1.5 μm to 5 μm spheres and 3 μm flakes with L-ascorbic acid were prepared, screen-printed, and treated at temperatures of 110 °C to 300 °C in air. The bulk resistance of films treated below 160 °C were two orders of magnitude higher than that of bulk copper, ρCu, and limited by particle-particle contact resistances. They were reduced by treating the prints at 160 °C to 250 °C, leading to bulk film resistances down to 41ρCu. We demonstrate that the high mobility of silver enables the formation of necks that bridge the copper cores and reduce resistivity in this temperature window. The sintered prints retained their conductivity for at least 6 months. Treatments at higher temperatures in air were detrimental: resistances increased above 250 °C. These temperatures led to dewetting of the silver coating and fast copper oxidation, resulting in a continuously increasing resistance. In a final study, we demonstrated that films treated below 200 °C can be recycled by recovering the metal powder from the printed conductors and that the powder can be printed again.
Hydrogel inks used for 3D bioprinting are mainly based on radical polymerization of methacrylate groups. Inks based on the radical thiol-ene polymerization have raised attention in recent years, as they are not susceptible to oxygen inhibition and require lower light doses for polymerization, therefore, they can be more benign to living cells. Here, we modified hyaluronic acid inks with allyl ether or norbornene groups, which can form a crosslinked network in the presence of a dithiol crosslinker. We performed systematic studies to compare precursor stability, photocrosslinking and printability of the thiol-ene inks with methacrylated hyaluronic acid inks. Our results showed higher storage stability of the thiol-ene hydrogel precursors over 15 months. Photorheology experiments demonstrated faster photocrosslinking and higher temporal control over the network formation in thiol-ene inks. The suitability of thiol-ene inks was demonstrated using digital light processing-based printing with a minimum print time of 2 s per layer and a xy resolution of 100 µm.
Soft lithography, in particular microcontact printing (µCP), represents a well-established and widespread class of lithographic patterning techniques. It is based on a directed deposition of molecules or colloidal particles by a transfer process with a micro-structured stamp. A critical aspect of µCP is the adhesion cascade that enables the directed transfer of the objects. Here, the interfacial properties of a µCP-stamp are tuned electrochemically to modify the adhesion cascade. During the printing process, the µCP-stamp is submerged in an electrolyte solution and acted as a working electrode whose surface properties depended on the externally applied potential, thus enabling in situ rapid switching of its adhesion properties. As a proof of principle, defined particle patterns are selectively removed from a monolayer of colloidal particles. The adhesion at the particle/solid interface and the transfer mechanisms are determined by using the colloidal probe technique based on atomic force microscopy (AFM). In this case, a single particle is brought into contact with an electrode with the same surface chemistry as the µCP-stamp. Hence, it became possible to determine the electrochemical potential ranges suitable to establish an adhesion cascade.
Developing thin, freestanding electrodes that work simultaneously as a current collector and electroactive material is pivotal to integrating portable and wearable chemical sensors. Herein, we have synthesized graphene/Prussian blue (PB) electrodes for hydrogen peroxide detection (H2O2) using a two-step method. First, an reduced graphene oxide/PAni/Fe2O3 freestanding film is prepared using a doctor blade technique, followed by the electrochemical deposition of PB nanoparticles over the films. The iron oxide nanoparticles work as the iron source for the heterogeneous electrochemical deposition of the nanoparticles in a ferricyanide solution. The size of the PB cubes electrodeposited over the graphene-based electrodes was controlled by the number of voltammetric cycles. For H2O2 sensing, the PB10 electrode achieved the lowest detection and quantification limits, 2.00 and 7.00 μM, respectively. The findings herein evidence the balance between the structure of the graphene/PB-based electrodes with the electrochemical performance for H2O2 detection and pave the path for developing new freestanding electrodes for chemical sensors.
Hybrid core–shell nanoparticles with metal cores and conductive polymer shells yield materials that are sinter-free and highly conductive but mechanically weak. Conventional composites of such nanoparticles are electrically insulating. Here, we introduce microscale phase-separated nanocomposites of hybrid gold-PEDOT:PPS particles in insulating poly(vinyl alcohol) (PVA). They combine electrical conductivities of up to 2.1 × 105 S/m at 10 vol % PVA with increased mechanical adhesion on polyethylene terephthalate and glass substrates. We studied the effects of the PVA molecular weight, hydrolyzation degree, and volume fraction. Composites with 10 vol % highly hydrolyzed PVA at a MW of 89–98 kDa had the highest conductivities and stabilities; highly hydrolyzed PVA even increased the conductivity of the hybrid particle layers. We propose the formation of hydrogen bonds between PVA and PEDOT:PSS that lead to demixing and the formation of stable, structured composites. Finally, we demonstrated the inkjet-printability of inks containing PVA in water with viscosities of 1.6–2.0 Pa s at 50.1 s–1 and prepared bending-resistant electrical leads.
Herein, a study dealing with a progress on palladium (Pd) electrocatalysts for an efficient glycerol electrooxidation in model aqueous and real fermentation solutions with special focus on some physicochemical parameters (e.g., the impact of adsorption stage of multiple species, presence of oxygen, influence of anodic limits and Pd-size) was conducted. During the course of investigations by tandem of an optical oxygen minisensor and cyclic voltammetry a significant impact of oxygen on the efficiency of glycerol electrooxidation on Pd electrocatalysts at alkaline pH in model aqueous and yeast fermentation media was revealed. The obtained knowledge was used for the optimization of an assay utilizing Pd-sensing layers for glycerol determination and quantification in yeast fermentation medium. Received results showed a satisfactory agreement with a control measurement carried out by gas chromatography mass-spectrometry.
Recycling of Waste from Electrical and Electronic Equipment (WEEE) is crucial in preventing resource depletion and promoting a circular economy. The increasing fraction of printed and in-mold electronics is particularly challenging. The combinations of polymers and printed metals are difficult to disassemble due to the strong interfaces that are formed to create reliable in-mold devices. The relatively low metal content makes recycling uneconomical and those valuable materials are then lost to landfill or incineration. Separation layers enable design-for-recycling with minimal modifications during the fabrication process, while preserving product performance and reliability. We present a scalable method for preparing polymer separation layers for printed and in-mold electronics. Slot-die coating is used to prepare water-soluble polymer films with a dry thickness of less than 10 μm on commodity polymer substrates. This separation layer improves the bending stability of inkjet- and screen-printed circuits. Furthermore, it is compatible with typical polymer processing methods, such as thermoforming and injection molding. Various methods, including plasma treatment, are presented to ensure adhesion of the modified interfaces. Finally, we investigate the material recovery and demonstrate the release of the integrated metal within a few minutes by dissolving the separation layer in water. This material recovery process can be readily integrated into current WEEE recycling processes.
Glycerol is a widely used signaling bioanalyte in biotechnology. Glycerol can serve as a substrate or product of many metabolic processes in cells. Therefore, quantification of glycerol in fermentation samples with inexpensive, reliable, and rapid sensing systems is of great importance. In this work, an amperometric assay based on one-step designed electroplated functional Pd layers with controlled design was proposed for a rapid and selective measurement of glycerol in yeast fermentation medium. A novel assay utilizing electroplated Pd-sensing layers allows the quantification of glycerol in yeast fermentation medium in the presence of interfering species with RSD below 3% and recoveries ranged from 99 to 103%. The assay requires minimal sample preparation, viz. adjusting of sample pH to 12. The time taken to complete the electrochemical analysis was 3 min. Remarkably, during investigations, it was revealed that sensitivity and selectivity of glycerol determination on Pd sensors were significantly affected by its adsorption and did not depend on the surface structure of sensing layers. This study is expected to contribute to both fundamental and practical research fields related to a preliminary choice of functional sensing layers for specific biotechnology and life science applications in the future.
Biofunctional Polyacrylamide Hydrogels using Tetrazole-Methylsulfone Comonomer for Thiol Conjugation
(2024)
Biofunctionalized polyacrylamide (PAAm) hydrogels are important 2D substrates for studying cell physics and mechanobiology. In this work, an arylmethylsulfone (MS) comonomer is developed that can be incorporated into PAAm gels under aqueous radical polymerization conditions. The resulting hydrogels show similar properties to unmodified PAAm gels, indicating that the comonomer is incorporated without affecting PAAm physical properties. The MS-containing PAAm hydrogels allow efficient conjugation of thiol derivatized biomolecules and require very low comonomer content (2 mM, 0.18 mol% relative to AAm) and thiol incubation amounts (≥ 0.15 µg per gel) to achieve functional densities that elicit cell responses. Compared to carboxyl-functionalized PAAm hydrogels, a 10-fold lower comonomer concentration and a 10-fold lower ligand feed concentration are sufficient to achieve comparable cell adhesion responses. The new comonomer opens up possibilities for efficient and straightforward biofunctionalization of PAAm hydrogels used in cell biophysical studies.
Hybrid hydrogels are hydrogels that exhibit heterogeneity in the network architecture by means of chemical composition and/or microstructure. The different types of interactions, together with structural heterogeneity, which can be created on different length scales, determine the mechanical properties of the final material to a large extent. In this work, the microstructure–mechanical property relationships for a hybrid hydrogel that contains both electrostatic and covalent interactions are investigated. The hybrid hydrogel is composed of a microphase-separated polyelectrolyte complex network (PEC) made of poly(4-styrenesulfonate) and poly(diallyldimethylammonium chloride) within a soft and elastic polyacrylamide hydrogel network. The system exhibits a granular structure, which is attributed to the liquid–liquid phase separation into complex coacervate droplets induced by the polymerization and the subsequent crowding effect of the polyacrylamide chains. The coacervate droplets are further hardened into PEC granules upon desalting the hydrogel. The structure formation is confirmed by a combination of electron microscopic imaging and molecular dynamics simulations. The interpenetration of both networks is shown to enhance the toughness of the resulting hydrogels due to the dissipative behavior of the PEC through the rupture of electrostatic interactions. Upon cyclic loading–unloading, the hydrogels show recovery of up to 80% of their original dissipative behavior in less than 300 s of rest with limited plasticity. The granular architecture and the tough and self-recoverable properties of the designed hybrid networks make them good candidates for applications, such as shape-memory materials, actuators, biological tissue mimics, and elastic substrates for soft sensors.
Water-Driven Sol-Gel Transition in Native Cellulose/1-Ethyl-3-methylimidazolium Acetate Solutions
(2024)
The addition of water to native cellulose/1-ethyl-3-methylimidazolium acetate solutions catalyzes the formation of gels, where polymer chain–chain intermolecular associations act as cross-links. However, the relationship between water content (Wc), polymer concentration (Cp), and gel strength is still missing. This study provides the fundamentals to design water-induced gels. First, the sol–gel transition occurs exclusively in entangled solutions, while in unentangled ones, intramolecular associations hamper interchain cross-linking, preventing the gel formation. In entangled systems, the addition of water has a dual impact: at low water concentrations, the gel modulus is water-independent and controlled by entanglements. As water increases, more cross-links per chain than entanglements emerge, causing the modulus of the gel to scale as Gp ∼ Cp2Wc3.0±0.2. Immersing the solutions in water yields hydrogels with noncrystalline, aggregate-rich structures. Such water–ionic liquid exchange is examined via Raman, FTIR, and WAXS. Our findings provide avenues for designing biogels with desired rheological properties.
This study presents a novel approach to developing high-performance lithium-ion battery electrodes by loading titania-carbon hybrid spherogels with sulfur. The resulting hybrid materials combine high charge storage capacity, electrical conductivity, and core-shell morphology, enabling the development of next-generation battery electrodes. We obtained homogeneous carbon spheres caging crystalline titania particles and sulfur using a template-assisted sol-gel route and carefully treated the titania-loaded carbon spherogels with hydrogen sulfide. The carbon shells maintain their microporous hollow sphere morphology, allowing for efficient sulfur deposition while protecting the titania crystals. By adjusting the sulfur impregnation of the carbon sphere and varying the titania loading, we achieved excellent lithium storage properties by successfully cycling encapsulated sulfur in the sphere while benefiting from the lithiation of titania particles. Without adding a conductive component, the optimized material provided after 150 cycles at a specific current of 250 mA g–1 a specific capacity of 825 mAh g–1 with a Coulombic efficiency of 98%.
Nanoporous carbon materials with customized structural features enable sustainable and electrochemical applications through improved performance and efficiency. Carbon spherogels (highly porous carbon aerogel materials consisting of an assembly of hollow carbon nanosphere units with uniform diameters) are desirable candidates as they combine exceptional electrical conductivity, bespoke shell porosity, tunability of the shell thickness, and a high surface area. Herein, we introduce a novel and more environmentally friendly sol-gel synthesis of resorcinol-formaldehyde (RF) templated by polystyrene spheres, forming carbon spherogels in an organic solvent. By tailoring the molar ratio of resorcinol to isopropyl alcohol (R/IPA) and the concentration of polystyrene, the appropriate synthesis conditions were identified to produce carbon spherogels with adjustable wall thicknesses. A single-step solvent exchange process from deionized water to isopropyl alcohol reduces surface tension within the porous gel network, making this approach significantly time and cost-effective. The lower surface tension of IPA enables solvent extraction under ambient conditions, allowing for direct carbonization of RF gels while maintaining a specific surface area loss of less than 20% compared to supercritically dried counterparts. The specific surface areas obtained after physical activation with carbon dioxide are 2300–3600 m2 g−1. Transmission and scanning electron microscopy verify the uniform, hollow carbon sphere network morphology. Specifically, those carbon spherogels are high-performing electrodes for energy storage in a supercapacitor setup featuring a specific capacitance of up to 204 F g−1 at 200 mA g−1 using 1 M potassium hydroxide (KOH) solution as the electrolyte.
Pluronic (Plu) hydrogels mixed with variable fractions of Pluronic diacrylate (PluDA) have become popular matrices to encapsulate bacteria and control their growth in engineered living materials. Here we study the rheological response of 30 wt.% Plu/PluDA hydrogels with PluDA fraction between 0 and 1. We quantify the range of viscoelastic properties that can be covered in this system by varying in the PluDA fraction. We present stress relaxation and creep-recovery experiments and describe the variation of the critical yield strain/stress, relaxation and recovery parameters of Plu/PluDA hydrogels as function of the covalent crosslinking degree using the Burgers and Weilbull models. The analyzed hydrogels present two stress relaxations with different timescales which can be tuned with the covalent crosslinking degree. We expect this study to help users of Plu/PluDA hydrogels to estimate the mechanical properties of their systems, and to correlate them with the behaviour of bacteria in future Plu/PluDA devices of similar composition.
This Ph.D. thesis focuses on developing electrochemical energy storage devices that outperform existing lithium-ion batteries. The research investigates the design and modification of metal oxides and sulfides to enhance the electrochemical performance of commercial battery electrodes and presents the challenges met. By employing specific design strategies and derivatization methods, novel materials with unique properties are synthesized, distinct from those found in commercial batteries. For each material studied, the thesis examines the relationship between its electrochemical performance and various other material properties to address existing limitations. In the case of self-standing fibers, the influence of mechanical flexibility on electrochemical properties is analyzed. Similarly, for the conversion-type materials, the detrimental shuttling effect or electrode etching is mitigated by applying a stable coating to protect the active component from degradation. In parallel. this thesis aims to use pH-neutral syntheses and low-temperature derivatization to reduce the effect of harsh components and high-energy procedures and presents the challenges that arise from this. Additionally, this work explores complementary approaches to enhance the interface between the electrode and electrolyte after modifying the electrode material through materials engineering. These strategies are thoroughly investigated and presented as potential solutions to improve the overall performance of energy storage devices.