620 Ingenieurwissenschaften und Maschinenbau
Refine
Year of publication
Document Type
- Article (12)
- Contribution to a Periodical (1)
- Doctoral Thesis or Habilitation (25)
- Preprint (3)
- Report (2)
Is part of the Bibliography
- yes (43)
Keywords
- 3-Isocyanatopropyltriethoxysilane (1)
- Aluminium (1)
- Aluminiumoxide (2)
- Anzeigeelement (1)
- Beschichtung (1)
- CVD-Verfahren (1)
- Dichte <Physik> (1)
- Dünne Schicht (1)
- Elektrochrom (1)
- Elektrochromie (1)
Scientific Unit
- Dynamic Biomaterials (1)
- Energy Materials (3)
- Fellow (1)
- Functional Microstructures (10)
- Interactive Surfaces (2)
- Optical Materials (1)
- Schaltbare Oberflächen (1)
- Structure Formation (6)
The theoretical framework of conventional contact mechanics is based on idealized as- sumptions that have shaped the field for more than 140 years. Unfortunately, these assumptions do not lend themselves to the modelling of thin films, viscoelastic materials and frictional interfaces. Therefore, the present thesis is concerned with the system- atic generalization of these assumptions and their GFMD implementation to simulate a variety of previously inaccessible, realistic contact problems. First, finite material thickness is considered in the design of film-terminated fibril struc- tures for skin adhesion. An elastic film resting on a hard foundation is effectively more stiff than its bulk counterpart, which reduces its ability to conform to counter-faces and therefore reduces the adhesion to roughness. Second, the velocity-dependence of soft, adhesive multi-asperity contacts is studied, revealing the importance of topographical saddle points and the initial configuration, from which detachment is initiated. Further- more, we identify a scaling relation describing how short-ranged microscopic interactions slow down the macroscopic relaxation of a contact. Finally, we explore the influence of interfacial friction, showing that it increases local stress concentrations and impedes the fluid flow through the interface. The reported results provide new insight into commonly neglected phenomena, whose practical significance is reinforced by direct comparisons to experiments.
This article describes advancements in the ongoing digital transformation in materials science and engineering. It is driven by domain-specific successes and the development of specialized digital data spaces. There is an evident and increasing need for standardization across various subdomains to support science data exchange across entities. The MaterialDigital Initiative, funded by the German Federal Ministry of Education and Research, takes on a key role in this context, fostering collaborative efforts to establish a unified materials data space. The implementation of digital workflows and Semantic Web technologies, such as ontologies and knowledge graphs, facilitates the semantic integration of heterogeneous data and tools at multiple scales. Central to this effort is the prototyping of a knowledge graph that employs application ontologies tailored to specific data domains, thereby enhancing semantic interoperability. The collaborative approach of the Initiative's community provides significant support infrastructure for understanding and implementing standardized data structures, enhancing the efficiency of data-driven processes in materials development and discovery. Insights and methodologies developed via the MaterialDigital Initiative emphasize the transformative potential of ontology-based approaches in materials science, paving the way toward simplified integration into a unified, consolidated data space of high value.
Batteries contain combinations of materials that undergo electrochemical reactions to convert chemical into electrical energy. Battery research relies on experience and know-how. Important materials and processing data can get overlooked, remain undocumented, or even lost. To bridge the gap between fundamental materials research and battery process engineering, it is essential to generate, analyze, and, most importantly, link intermediate knowledge for future use. Here, it is shown how to combine domain knowledge and a data-driven approach to understanding material–property relationships in the case of conductivity networks of carbon black. The Battery Production and Characterisation Ontology (BPCO) is employed to identify hypotheses that connect battery processing to material domain knowledge. The material's interactions between carbon black, polyvinylidene flouride, and solvents in the BPCO are characterized. These materials combine to form the classical microstructure in battery electrodes for the electrical conductivity. It is demonstrated how new links to the BPCO, verified via materials-processing relationships, and the interim results are identified as intermediate data.
This dissertation explores the advancements in the design and manufacturing of lithium-ion batteries (LIB), with a focus on metal oxide-based materials and techniques used to enhance their performance. It discusses the processes to boost efficiency and environmental friendliness. The primary goal is to address the challenges of metal oxide electrodes in LIBs, particularly capacity degradation at high charge/discharge rates and expanding their operating voltage range. We are confident in our ability to enhance the characteristics of these electrodes through preparation methods. Our research investigates how different mixing techniques and variables can improve the performance and durability of these electrodes. Furthermore, this thesis describes our efforts to digitize the battery manufacturing process by introducing the DigiBatMat platform, a platform for battery materials and manufacturing processes. DigiBatMat drives advancements in battery technology by optimizing LIBs through data gathering and analysis, highlighting its crucial role in this field. Ultimately, this thesis provides insights into battery electrode engineering and supports initiatives to improve energy storage technologies and advance sustainability efforts.
The structure of supraparticles (SP) is a key parameter for achieving advanced functionalities arising from the combination of different nanoparticle (NP) types in one hierarchical entity. However, whenever a droplet-assisted forced assembly approach is used, e.g., spray-drying, the achievable structure is limited by the inherent drying phenomena of the method. Especially, mixed NP dispersions of differently-sized colloids are heavily affected by segregation during the assembly. Herein, the influence of the colloidal arrangement of Pt and SiO2 NPs within a single supraparticulate entity is investigated. A salt-based electrostatic manipulation approach of the utilized NPs is proposed to customize the structure of spray-dried Pt/SiO2 SPs. By this, size-dependent separation phenomena of NPs during solvent evaporation, that limit the catalytic performance in the reduction of 4-nitrophenol, are overcome by achieving even Pt NP distribution. Additionally, the textural properties (pore size and distribution) of the SiO2 pore framework are altered to improve the mass transfer within the material leading to increased catalytic activity. The suggested strategy demonstrates a powerful, material-independent, and universally applicable approach to deliberately customize the structure and functionality of multi-component SP systems. This opens up new ways of colloidal material combinations and structural designs in droplet-assisted forced assembly approaches like spray-drying.
An analytical model is provided for the peeling of a tape from a surface to which it adheres through cohesive tractions. The tape is considered to be a membrane without bending stiffness and is initially attached everywhere to a flat rigid surface. The tape is assumed to deform in plane strain, and finite deformations in the form of elastic strains are accounted for. The cohesive tractions are taken to be uniform when the tape is within a critical interaction distance from the substrate and then to fall immediately to zero once this critical interaction distance is exceeded. When the distance between the tape and the substrate is zero, repulsive and attractive tractions balance to zero; in this segment, sliding of the tape relative to the substrate is forbidden when we pull the tape up somewhere in the middle, though we permit such sliding when the tape is peeled from one end. In the cohesive zone and where the tape is detached, the interaction of the tape with the substrate is frictionless. Results are given for the force to peel a neo-Hookean tape at any angle up to vertical when one end of it is pulled away from the substrate, as well as for scenarios when the tape is lifted somewhere in the middle to form a V shape being pulled away from the substrate.
© 2020 Lithium-ion batteries with single ion-conductor ceramic electrolytes short-circuit when subjected to charging currents above a critical current density. Here, we analyse the rate at which a lithium (Li) filament (sometimes referred to as a dendrite) will grow from the cathode towards the anode during charging of such batteries. The filament is modelled as a climbing edge dislocation with its growth occurring by Li+ flux from the electrolyte into the filament tip at constant chemical potential. The growth rate is set by a balance between the reduction of free-energy at the filament tip and energy dissipation associated with the resistance to the flux of Li+ through the filament tip. For charging currents above the critical current density, the filament growth rate increases with decreasing filament tip resistance. Imperfections, such as voids in the Li cathode along the electrolyte/cathode interface, decrease the critical current density but filament growth rates are also lower in these cases as filament growth rates scale with the charging currents. The predictions of the model are in excellent quantitative agreement with measurements and confirm that above the critical current density a filament can traverse the electrolyte in minutes or less. This suggests that initiation of filament growth is the critical step to prevent short-circuiting of the battery.
The relative tendency of freely dispersed and bundled gold nanowires to break up along their length by the Rayleigh–Plateau instability is investigated both experimentally and theoretically. Small angle X-ray scattering, in combination with transmission electron microscopy, reveal that the bundling of nanowires can enhance their stability. The experimental observation is rationalized by a linear perturbation analysis of a representative unit cell of bundled wires. A stability map is constructed for a bundle of nanowires to display the sensitivity of the Rayleigh–Plateau instability to the number and size of contacts with nearest neighbors per nanowire, and to the ratio of interfacial energy to surface energy. Stabilisation is enhanced by allowing the bundle of wires to sinter freely: a criterion for this kinetically-based stabilisation is given in terms of the ratio of pinch-off time for the instability to the sintering time to form the necks between nanowires.
Micropatterned dry adhesives rely mainly on van der Waals interactions. In this paper, we explore the adhesion strength increase that can be achieved by superimposing an electrostatic field through interdigitated subsurface electrodes. Micropatterns were produced by replica molding in silicone. The adhesion forces were characterized systematically by means of experiments and numerical modeling. The force increased with the square of the applied voltage for electric fields up to 800 V. For larger fields, a less-than-quadratic scaling was observed, which is likely due to the small, field-dependent electrical conductivity of the materials involved. The additional adhesion force was found to be up to twice of the field-free adhesion. The results suggest an alternative method for the controlled handling of fragile or miniaturized objects.
Electrochemical water desalination is an emerging technology known for its high efficiency and low energy consumption in removing ions from aqueous media. The present thesis begins by explaining the fundamentals of a typical electrochemical water desalination system and presenting relevant performance metrics. The significance and limitations of the latter metrics are then discussed based on the generations of the electrodes developed during the past few decades. This report seeks to expand the scope by investigating MXene (titanium carbide) as a purely pseudocapacitive material characterized by a capacitor-like electric response achieved through ion intercalation. Afterward, the merit of MXene when utilized as an electrode in electrochemical desalination is investigated for both single-salt and multi-salt aqueous solutions, ultimately establishing qualitative insights into the relationship between MXene properties and its electrochemical desalination behavior. Finally, the thesis goes beyond MXene and explores its sibling materials, such as MBene (transition metal boride), for lithium-ion battery electrodes. As another application of 2D nanolamellar materials at the water-energy nexus, we have explored MXene conversion into transition metal dichalcogenides by sulfidation heat treatment and its merit as electrodes for hydrogen electrocatalysis. These findings can contribute to developing more efficient and sustainable energy storage, conversion, and desalination technologies.